Carnegie Mellon University Department of Chemistry
photo of David Yaron

David Yaron

Professor

Carnegie Mellon University

email:

Phone: (412) 268-1351

Fax: (412) 268-1061

Office: Mellon Institute 501

group website

Faculty & Research

David Yaron

Professor

Research Areas

Theory, Computational, Semi-empirical quantum chemistry, Electronic structure theory, Materials theory, Photophysics, Spectroscopy

Computational Modeling of Organic Semiconductors

A central goal of our research is to develop a reliable, semi-empirical quantum chemistry approach to the excited electronic states of conjugated polymers, and to use this to predict structure-property relationships of relevance to device design. Our techniques have greatly expanded the questions that can be addressed with the INDO (Intermediate Neglect of Differential Overlap) method. These include a dielectric model that provides the first consistent theory of both the neutral and charged excited states, and computational optimizations that allow calculations on ensembles of disordered structures, such that we can model amorphous materials.

New Approaches to Semiempirical Electronic Structure Theory

We have also begun development of new approaches to semi-empirical quantum chemistry that use machine learning to take better advantage of molecular similarity. We first create a set of ab initio data containing detailed data on how a functional group behaves in a hundreds of different chemical environments. The challenge is extracting from this data, sufficient information to predict its behavior in a new environment.

Education and Appointments
2013–present Professor, Carnegie Mellon University
1998–2013 Associate Professor, Carnegie Mellon University
1992–1998 Assistant Professor, Carnegie Mellon University
1990–1992 Postdoctoral Fellow, MIT
1990 Ph.D., Harvard University
Awards and Distinctions
2004 Award for Excellence: Post-secondary Educator
Carnegie Science Center Pittsburgh
2003 Classics Award for Best Learning Object in Chemistry
Editor’s Choice for Exemplary Learning Object in any domain
Merlot Digital Library
2001 Julius Ashkin Teaching Award
Mellon College of Science, Carnegie Mellon
2000 Henry Dreyfus Teacher-Scholar Award
The Camile and Henry Dreyfus Foundation
1999 Visiting Professor
Ecole Normale Superieure de Cachan, France
Selected Publications

A.L. Stadler, B.R. Renikuntla, D. Yaron, A.S. Fang, B.A. Armitage, "Substituent Effects on the Assembly of Helical Cyanine Dye Aggregates in the Minor Groove of a DNA Template", Langmuir, (in press).

Angela Liu and David Yaron, "Modeling outer-sphere disorder in the symmetry breaking of PPV", J. Chem. Phys. 130, 154701 (2009).

Nicolae M. Albu, Edward Bergin and David J. Yaron, "Computational design of light driven molecular motors", J. Phys. Chem. A 113, 7090 (2009).

V. Ediz, A. J. Monda, R. P. Brown, and D. J. Yaron, "Using Molecular Similarity to Develop Reliable Models of Chemical Reactions in Complex Environments", J. Chem. Comp. and Theory 5, 3175 (2009).

Volkan Ediz, Jihoon L. Lee, Bruce A. Armitage, and David Yaron, "Molecular Engineering of Torsional Potentials in Fluorogenic Dyes via Electronic Substituent Effects", J. Phys. Chem. A 112, 9692-9701 (2008).

G. L. Silva, V. Ediz, D. Yaron, and B. A. Armitage, "Experimental and Computational Investigation of Unsymmetrical Cyanine Dyes: Understanding Torsionally Responsive Fluorogenic Dyes", J. Am. Chem. Soc. 129(17), 5710-5718 (2007).

L. Liu, D. Yaron, and M. A. Berg, "Electron-phonon coupling in phenyleneethynylene oligomers: A nonlinear one-dimensional configuration-coordinate model", J. of Phys. Chem. C 111(15), 5770-5782 (2007).

Aimee Tomlinson, Brian Frezza, Matt Kofke, Bruce Armitage, and David Yaron, "A Structural Model for Cyanine Dyes Templated into the Minor Groove of DNA", Chem. Phys. 325, 36-47 (2006).

B.G. Janesko and D. Yaron, "Functional group basis sets", Journal of Chemical Theory and Computation 1, 267-278 (2005).

Yaron, D., Karabinos, M., Lange, D., Greeno, J. G. and Leinhardt, G. "The ChemCollective: Virtual labs and online activities for introductory chemistry courses" Science 328, 584-585 (2010).