Carnegie Mellon University Department of Chemistry
photo of Neil Donahue

Neil Donahue

Thomas Lord Professor in Chemistry, Professor of Chemical Engineering, and Engineering and Public Policy; Director, Steinbrenner Institute for Environmental Education and Research

Carnegie Mellon University


Phone: (412) 268-4415

Fax: (412) 268-7139

Office: Doherty Hall 2116
The Center for Atmospheric Particle Studies

Faculty & Research

Neil Donahue

Thomas Lord Professor in Chemistry, Professor of Chemical Engineering, and Engineering and Public Policy; Director, Steinbrenner Institute for Environmental Education and Research

Research Areas

Atmospheric Chemistry, Organic Aerosol, Kinetics, Reaction Dynamics, Radical-Molecule Reactivity, Ozonolysis, Mass Spectrometry

Atmospheric Chemistry: Ozonolysis and Organic Aerosols.

His principal interest is in the oxidation chemistry of Earth's atmosphere — specifically the oxidation of organic compounds and the associate radical processes in the atmosphere. Two closely connected areas are ozonolysis chemistry and the chemistry controlling organic-aerosol levels and properties in the atmosphere. Aerosols — fine particulate matter, or PM — are of interest for two major reasons: particles play a central role in climate, and they kill people. The leading uncertainty on the forcing side of climate science is the degree to which cloud properties have changed between 1850 and now due to changes in the number concentrations of fine, water-soluble particles that act as cloud-condensation nuclei (CCN). Also, approximately 50,000 people die prematurely each year in the U.S. alone from inhalation of elevated levels of fine PM. More than half of the fine PM mass is composed of a very complex mixture of highly oxidized organic compounds. They are water soluble and have unknown health effects but appear to correlate positively with observed health endpoints.

Recent research largely directed by Prof. Donahue within the Center for Atmospheric Particle Studies (CAPS) has established that organic aerosol exists in a dynamic balance connecting phase partitioning and oxidation chemistry. Oxidation of large, reduced organics typical of fresh emissions tends to functionalize the carbon backbone, leading to lower vapor pressure products that spend more time in the particulate (condensed) phase, but continued oxidation tends to fragment the carbon backbone as it drives the products towards the oxidative endpoint — CO2. Understanding this multiphase chemistry in the extremely rich and complex mixture that is organic aerosol is a major current research focus.

In parallel, the Donahue group is pursuing the short-lived intermediates involved in gas-phase ozonolysis chemistry, including the carbonyl-oxide (Criegee Intermediate). Reactions in the gas phase show a strong dependence on both pressure and the carbon number because energy transfer from highly-excited reaction products via collisions with the bath gas is inefficient. The group uses both experimental (spectroscopic) and theoretical (quantum chemistry coupled to statistical reaction dynamics) tools to probe the nature and fate of these intermediates.

Education and Appointments
2008–present Professor of Chemistry, Chemical Engineering, and Engineering and Public Policy, Carnegie Mellon University
2005–2008 Associate Professor of Chemistry and Chemical Engineering, Carnegie Mellon University
2000–2005 Assistant Professor of Chemistry and Chemical Engineering, Carnegie Mellon University
1991–2000 Postdoctoral Associate and Research Scientist, Harvard University
1991 Ph.D. Meteorology, MIT
Awards and Distinctions
2017 2017 Esselen Award, Northeastern Section of the American Chemical Society
2016 ACS Pittsburgh Award
2011 Fellow, American Geophysical Union
2010 Carnegie Institute of Technology Outstanding Research Award
1991–1993 DOE Distinguished Postdoctoral Fellow
1985–1988 NASA Graduate Student Researcher
1985 MIT Jule Charney Award
Selected Publications

Aging of biogenic secondary organic aerosol via gas-phase OH radical reactions. Proc. Nat. Acad. Sci. 109, 13503–13508 (N. M. Donahue, K. M. Henry, T. F. Mentel, A. K. Scharr, C. Spindler, B. Bohn, T. Brauers, H. P. Dorn, H. Fuchs, R. Tillmann, A. Wahner, H. Saathoff, K. H. Naumann, O. Möhler, T. Leisner, L. Müller, M.-C. Reinnig, T. Hoffmann, K. Salow, M. Hallquist, M. Frosch, M. Bilde, T. Tritscher, P. Barmet, A. P. Praplan, P. F. DeCarlo, J. Dommen, A. S. H. Prévôt, and U. Baltensperger) 2012 (5).

MRCISD studies of the dissociation of vinylhydroperoxide, CH2CHOOH: there is a saddle point. J. Phys. Chem. A 116, 6823–6830 (T. Kurtén and N. M. Donahue) 2012 (1).

Adventures in ozoneland: Down the rabbit-hole. Phys. Chem. Chem. Phys. 13, 10848–10857 (N. M. Donahue, G. T. Drozd, S. A. Epstein, A. A. Presto, and J. H. Kroll) 2011 (10).

2,3-dimethyl-2-butene (TME) ozonolysis: Pressure dependence of stabilized Criegee intermediates and evidence of stabilized vinyl hydroperoxides. J. Phys. Chem. A 115, 161–166 (G. T. Drozd, J. H. Kroll, and N. M. Donahue) 2011.

Carbon oxidation state as a metric for describing the chemistry of atmospheric organic aerosol. Nature Chemistry 3, 133–139 (J. H. Kroll, N. M. Donahue, J. L. Jimenez, S. Kessler, M. R. Canagaratna, K. Wilson, K. E. Alteri, L. R. Mazzoleni, A. S. Wozniak, H. Bluhm, E. R. Mysak, J. D. Smith, C. E. Kolb, and D. R. Worsnop) 2011.

Functionalization vs fragmentation: n-aldehyde oxidation mechanisms and secondary organic aerosol formation. Phys. Chem. Chem. Phys. 12, 13975–13982 (H. J. Chacon-Madrid, A. A. Presto, and N. M. Donahue) 2010.

The HOOH UV spectrum: Importance of the transition dipole moment and torsional motion from semi-classical caluclations on an ab-initio PES. J. Chem. Phys. 132, 084304 (G. T. Drozd, A. Mel- nichuk, and N. M. Donahue) 2010.

Evolution of organic aerosols in the atmosphere: A new framework connecting measurements to models. Science 326, 1525–1529 (J. L. Jimenez, M. R. Canagaratna, N. M. Donahue et al) 2009.

Reactivity of oleic acid in organic particles: changes in oxidant uptake and reaction stoichiometry with particle oxidation. Phys. Chem. Chem. Phys. 11, 7951–7962 (A. M. Sage, A. L. Robinson, and N. M. Donahue) 2009.

Secondary organic aerosol formation from multiphase oxidation of limonene by ozone: Mechanistic constraints via two-dimensional heteronuclear NMR spectroscopy. Phys. Chem. Chem. Phys. 11, 7810–7818 (C. S. Maksymiuk, C. Gayathri, R. R. Gil, and N. M. Donahue) 2009.

Rethinking organic aerosols: Semivolatile emissions and photochemical aging. Science 315, 1259–1263 (A. L. Robinson, N. M. Donahue, M. K. Shrivastava, A. M. Sage, E. A. Weitkamp, A. P. Grieshop, T. E. Lane, J. R. Pierce, and S. N. Pandis) 2007.

Coupled partitioning, dilution, and chemical aging of semivolatile organics. Environ. Sci. Technol. 40, 2635 – 2643 (N. M. Donahue, A. L. Robinson, C. O. Stanier, and S. N. Pandis) 2006.

Reaction barriers: Origin and evolution. Chem. Rev. 103, 4593?4604 (N. M. Donahue) 2003.