Lecture Notes J: Molecular Orbital Theory

1) Bond formation

Bonding between two 1s orbitals in H₂

H₂ versus He₂ (definition of bond order)

Bond order = (number of bonding electrons – number of antibonding electrons)/2

If atom B is more electronegative than atom A
2) **Sigma (σ) versus pi (π) bonding**

Sigma bonding between s orbitals

Sigma bonding between p orbitals

Sigma bonding between s and p orbital

Pi bonding
3) **Hybrid orbitals in polyatomic molecules**

\[\text{H}_2\text{CCH}_2 \]

\[\text{HCCH} \]
4) **Terminal heavy (non-hydrogen) atom**

Orbitals on a terminal atom do not hybridize

For B₂, C₂, N₂

For O₂, F₂

Why does the order switch for O₂ and F₂?
Exercise

Draw the molecular orbital diagram for C_2

What is the bond order for C_2, C_2^+ and C^-?

- C_2
 - a) 1
 - b) $1\frac{1}{2}$
 - c) 2
 - d) $2\frac{1}{2}$

- C_2^+
 - a) 1
 - b) $1\frac{1}{2}$
 - c) 2
 - d) $2\frac{1}{2}$

- C_2^-
 - a) 1
 - b) $1\frac{1}{2}$
 - c) 2
 - d) $2\frac{1}{2}$

Which of the following are paramagnetic?

- C_2
 - a) paramagnetic
 - b) not paramagnetic

- C_2^+
 - a) paramagnetic
 - b) not paramagnetic

- C_2^{+2}
 - a) paramagnetic
 - b) not paramagnetic

- C_2^-
 - a) paramagnetic
 - b) not paramagnetic

- C_2^{-2}
 - a) paramagnetic
 - b) not paramagnetic
5) *Diatomice molecules: hydrides*

HF