1) Quantitative spectroscopy

2) Absorption of light: quantum interpretation

- Light is made of photons with energy $E = h\nu$; $h=6.626 \times 10^{-34}$ J s

- Molecules can only exist in specific energy states
Concept

Consider two different systems, with the following energy levels

System A

\[\begin{array}{c}
E_1 \\
E_2
\end{array} \]

System B

\[\begin{array}{c}
E_1 \\
E_2
\end{array} \]

Which of the following could be true:

a) The systems absorb light of the same color.
b) System A absorbs red light and System B absorbs blue light.
c) System A absorbs blue light and System B absorbs red light.

Which of the following could be true:

a) The systems have the same color.
b) System A appears red and System B appears blue.
c) System A appears blue and System B appears red.

3) **Demo: spectrum glasses**
4) **Photoelectric effect**

When light, with a wavelength of 2.50×10^{-7} m, falls upon a piece of Chromium (Cr) in an evacuated glass tube, a photoelectron is emitted. If the binding energy for Cr is 7.29×10^{-19} J, what is the kinetic energy of that photoelectron?

\[
\frac{1}{2}mv^2 = \text{kinetic energy of photoelectron}
\]

Concept

A red light with 10^5 photons per second is hitting a material, and 10^4 electrons per second are being emitted. The intensity of the light is doubled to 2×10^5 photons per second.

a) the number of ejected electrons is doubled, and they have more kinetic energy.
b) the number of ejected electrons is doubled, but their kinetic energy is unchanged.
c) the number of ejected electrons is unchanged, but they have more kinetic energy.
d) the number of ejected electrons is unchanged, and their kinetic energy is unchanged.
5) Energy units
6) DeBroglie wavelength
7) Particle in a box