Formation of Fe(III)Fe(IV) Species from the Reaction between a Diiron(II) Complex and Dioxygen: Relevance to Ribonucleotide Reductase Intermediate X
Dongwan Lee,1 J. Du Bois,2 Doros Petasis,2 Michael P. Hendrich,2 Carsten Krebs,3 Boi Han Huyhn,3 and Stephen J. Lippard*4,5

Department of Chemistry
Massachusetts Institute of Technology
Cambridge, Massachusetts 02139
Department of Chemistry, Carnegie Mellon University
Pittsburgh, Pennsylvania 15213
Department of Physics, Emory University
Atlanta, Georgia 30322
Received July 8, 1999

The reaction of m-terphenyl-based carboxylic acids with ferrous salts produces novel tetracarboxylate dinuclear clusters through an extraordinarily efficient self-assembly process. Recently, we reported the preparation of one such compound, [Fe2(μ-O2-CAR10)(O2-CAR10)]2(C6H8N4)] (1), and highlighted its unique reactivity with dioxygen. Efforts to explore this chemistry further were hampered by the poor solubility of 1 in nonpolar solvents, thus prompting the synthesis of new Ar Tol CO2 (4- tBuC5H4N)2 (2), that reacts with O2 to furnish [Fe2(μ-OH)2(μ-O2-CAR24)(O2-CAR18)(4-BuC6H4N)] (4). This process parallels the oxygenation reaction of 1, proceeding through a metastable green intermediate 3 that decays to afford 4 in isolated yields exceeding 75%. Studies with 2 have made possible the characterization and assignment of 3 as a mixture containing equimolar quantities of mixed-valent species FeIIFeIV and FeIIIFeIV. The formation of a high-valent diiron bridged complex from 2 and dioxygen mimics closely the purported mechanistic chemistry of certain diiron metalloenzymes. Additionally, the FeIIFeIV component in 3 represents a putative model for a key intermediate, X, in the reaction cycle of the R2 subunit of ribonucleotide reductase (RNR−R2).4,5 To the best of our knowledge, the formation of 3 is the first example of a process that utilizes dioxygen to access the FeIV oxidation state in synthetic model complexes.5

Neutral tetracarboxylate complex 2 was prepared upon treatment of [Fe2(μ2-O2-CAR10)]2(O2-CAR24)(THF)2 with 2 equiv of 4-tert-butylpyridine (Scheme 1). The structure of 2 reveals a dinuclear adduct in which four Ar Tol CO2− groups span the two metal centers (Figure S1). Each iron in 2 is square pyramidal and has a coordination geometry that closely resembles those of previously reported diiron(II) paddlewheel complexes.8

Scheme 1

Oxygenation of a CH3Cl2 solution of 2 at −78 °C resulted in the irreversible generation of a deep green solution 3 with a broad visible absorption centered at ~670 nm (ε = 1700 M−1 cm−1). At low temperature, 3 is stable for >12 h, but it slowly decays upon warming above −65 °C to afford a yellow material (Figure S2). X-ray analysis established this product to be the bis(μ-hydroxo)diiron(III) complex 4 (Scheme 1 and Figures S3, S4). Compound 4 is structurally analogous to that obtained from oxidation of 1, having a short FeIII−FeII separation of ~2.8 Å due to the presence of four bridging ligands. A weak ferromagnetic interaction, J = 0.63(5) cm−1 with g = 2.00(1), was observed by SQUID susceptometry on solid samples of 4.

X-Band EPR spectra collected on frozen CH3Cl2 samples of 3 exhibited a strong isotropic g = 2 signal and a less intense absorption at g = 10 (Figure 1). Quantitation of these two species accounted for 70% of the total iron, the former signal contributing 40% and the latter 30%. The X-band signal at g = 2, with a width of ~28 G, originates from an S = 1/2 species which shows resolved g-anisotropy at Q-band (see inset). The two simulations overlaid on the data use the same parameter set of g = 1.986, 1.997, and 2.011. This g-anisotropy is similar to that of the RNR−R2 X (g = 1.994, 1.999, and 2.007) signal,8,9 which arises from the antiferromagnetically coupled FeIIFeIV core in this enzyme intermediate. The signals at g = 10 (X- and Q-band) and g = 4.3 and 2.8 (Q-band) originate from an S = 3/2 species and the simulations overlaid on the data were obtained with D = 1.2 cm−1, E/2 = 0.013, and g = 2.00. Both the S = 1/2 and S = 3/2 signals display Curie law behavior up to 150 K, indicating exchange interactions of |2J| > 200 cm−1 for the former and > 50 cm−1 for the latter.7 The similarity of the S = 1/2 EPR signal with that of a complex prepared by one-electron chemical oxidation of 2II leads us to assign it as the corresponding FeIIFeIII cation. The S = 3/2 spin state can result either from a ferromagnetic interaction between iron centers or by electron delocalization for which a double-exchange mechanism12 is dominant.

Figure 2 displays the Mössbauer spectra of a solid powder sample of 3 recorded at 4.2 K with a 50-mT magnetic field applied parallel (A) and perpendicular (B) to the γ-rays. The spectra may be deconvoluted into three major components. A central quadrupole doublet (marked by brackets) with apparent Mössbauer parameters of ΔE0 = 1.13 mm/s and δ = 0.54 mm/s is assigned

(7) H = −2S1/2S2.
(10) The resonances near g = 4 in Q-band for both parallel and perpendicular modes are from an intradoublet transition and are not included in the simulation. The g = 19 (X-band) and possibly the g = 29 (Q-band) signals are from the diiron(III) species, whereas the g = 16 signal (Q-band) and its simulation are from unreacted 2, which account for 20 and 10% of the total iron, respectively.
Figure 1. X-band (A, 9.4 GHz) and Q-band (B, 34.1 GHz) EPR spectra of a frozen CH₂Cl₂ solution of 3 for microwave fields parallel and perpendicular to the static field. Dashed lines are quantitative simulations for the S = 1/2 and S = 3/2 species discussed in the text. The inset is a magnified view of the Q-band g = 2 signal. Sample temperatures are ~12 K and relative signal gains are shown on the figure.

Figure 2. Mössbauer spectra of the solid powder sample of 3 recorded at 4.2 K with a 50-mT magnetic field applied parallel (A) and perpendicular (B) to the γ-rays. Spectrum C is a different spectrum of the spectra shown in A and B. The solid lines are theoretical simulations of the S = 1/2 species using the parameters listed in Table S1. The theoretical spectra are normalized to 36% of the total iron absorption.

Acknowledgment. This work was supported by grants from the National Science Foundation and National Institute of General Medical Sciences. We thank Drs. T. J. Mizoguchi and B. Spingler for helpful discussions.

Supporting Information Available: Details of the synthetic procedures, X-ray crystallographic tables, physical characterization of 2 and 4 (PDF). An X-ray crystallographic file in CIF format. This material is available free of charge via the Internet at http://pubs.acs.org.

JA9923686

(13) Preliminary high-field Mössbauer data indicate this broad component to be a valence-delocalized S = 3/2 FeIIFeIII species, detailed characterization of which is currently in progress.

(15) In support of this putative reaction scheme, manometric measurements demonstrated that substoichiometric amounts of O₂ (0.75 ± 0.1) are consumed per mol of 2 to provide 3. At present, however, we have no apparent explanation for the formation of the diiron(III) species. It might be generated by a reaction between the FeIIFeIV and FeIIFeIII species or in a branching pathway involving 2 and dioxygen.

(16) A related model has been recently proposed for the generation of Y122 in RNR−R2, in which two functionally different diiron clusters are involved in the reaction with O₂; Miller, M. A.; Gobena, F. T.; Kauffmann, K.; Münck, E.; Que, L., Jr.; Stankovich, M. T. J. Am. Chem. Soc. 1999, 121, 1096–1097.

(17) The oxidizing ability of 3 was manifested by reactions with substituted phenols, 2,4,6-tri-tert-butylphenol and 2,4-di-tert-butylphenol, which provided the corresponding phenoxyl radical (10%) or biphenol coupled product (40%), respectively. Unpublished results.

(18) In this regard it is interesting to note that reaction of O₂ with a similar diiron(II) complex derived from 2,6-dimesitylbenzoic acid affords an EPR silent purple complex. This species has been assigned as a diiron(III) peroxide on the basis of an isotope-sensitive vibration at 885 cm⁻¹ in the resonance Raman spectrum: Hagadorn, J. R.; Que, L., Jr.; Tolman, W. B. J. Am. Chem. Soc. 1998, 120, 13531–13532.