Reversible Switching of Magnetism in Thiolate-Protected Au Superatoms

Manzhou Zhu, Christine M. Aikens, Michael P. Hendrich, Rupal Gupta, Huifeng Qian, George C. Schatz, and Rongchao Jin

Downloaded from http://pubs.acs.org on February 19, 2009

More About This Article

Additional resources and features associated with this article are available within the HTML version:

- Supporting Information
- Access to high resolution figures
- Links to articles and content related to this article
- Copyright permission to reproduce figures and/or text from this article

View the Full Text HTML
Reversible Switching of Magnetism in Thiolate-Protected Au$_{25}$ Superatom

Manzhou Zhu,† Christine M. Aikens,‡ Michael P. Hendrich,† Rupal Gupta,† Huifeng Qian,† George C. Schatz,§ and Rongchao Jin*†

Department of Chemistry, Carnegie Mellon University, 4400 Fifth Avenue, Pittsburgh, Pennsylvania 15213, Department of Chemistry, Kansas State University, Manhattan, Kansas 66506, and Department of Chemistry, Northwestern University, Evanston, Illinois 60208

Received November 23, 2008; E-mail: rongchao@andrew.cmu.edu

Single gold atoms (e.g., in gas beams or adsorbed on a support) are paramagnetic because of the unpaired 6s electron, while bulk gold is diamagnetic because the paramagnetism of the conduction electrons is counteracted by the orbital and ionic core diamagnetism.1 The evolution of magnetism in going from gold atoms to nanoparticles to the bulk is of fundamental interest and importance. Previous work has observed magnetism in small Au nanoparticles,7–8 and a size-dependent magnetization was found for ∼1–5 nm Au nanoparticles.9 However, contradictory results exist in the literature, as the nanoparticle size distribution and ill-defined surface properties complicate the interpretation. Therefore, it is of critical importance to create a well-defined nanoparticle system and to achieve crystal-structure—property correlations in order to study the fundamentals of magnetism in gold nanoparticles.

We report reversible switching of paramagnetism in this first study of a well-defined gold nanoparticle system consisting of truly monodisperse nanoparticles containing 25 gold atoms stabilized by 18 thiolate ligands [abbreviated as Au$_{25}$(SR)$_{18}$, where R = phenylethyl]. Density functional theory (DFT) calculations successfully explain the origin of the magnetism, and it is found that the unpaired spin in the Au$_{25}$(SR)$_{18}$ nanoparticle resides in the Kohn–Sham highest occupied molecular orbital (HOMO). Interestingly, the HOMO orbital exhibits distinct P-like character, reminiscent of the superatom model for bare metal clusters.9–12 The results of this work demonstrate that the Au$_{25}$(SR)$_{18}$ nanoparticle is best considered as a ligand-protected superatom.

The Au$_{25}$(SR)$_{18}$ nanoparticles were synthesized via a kinetically controlled synthetic approach.13 The as-prepared gold nanoparticles were precipitated with ethanol and recrystallized in a mixed toluene/ethanol solvent. In this work, the collected Au$_{25}$ nanoparticles were further reacted with H$_2$O$_2$ (33%, aqueous). X-ray crystallographic analysis showed that the oxidized product consists of charge-neutral [Au$_{25}$(SR)$_{18}$]$_0$ nanoparticles.14 The [Au$_{25}$(SR)$_{18}$]$_0$ structure is based on an icosahedral Au$_{13}$ core, which is capped by a second gold shell comprising the remaining 12 Au atoms. In another view, the particle can be regarded as an Au$_{13}$ core capped by six “staple” motifs (−S−Au−S−Au−S−).

The magnetic properties of these well-defined, atomically monodisperse Au$_{25}$ nanoparticles were evaluated with electron paramagnetic resonance (EPR) spectroscopy using microcrystal powders of the nanoparticles (see the Supporting Information for experimental details). Low-temperature EPR spectra of the as-prepared [Au$_{25}$(SR)$_{18}$]$_0$ particles are shown in Figure 1. Microcrystalline and frozen-solution samples show an $S = \frac{1}{2}$ signal with $g = (2.56, 2.36, 1.82)$. EPR quantification of both samples indicates that [Au$_{25}$(SR)$_{18}$]$_0$ has one unpaired spin per particle. Solution samples prepared in toluene, chloroform, or 1:1 CH$_2$Cl$_2$/toluene over the concentration range of 1–0.01 mM [Au$_{25}$(SR)$_{18}$]$_0$ all show the same signal with no discernible change in line width. Surprisingly, there is no evidence of hyperfine splitting from the 197Au nuclei ($I = \frac{1}{2}$, natural abundance 100%) in any of these samples. Decreasing the amplitude of the magnetic field modulation has no effect on the line shape. The signal is not easily saturated: at 8 K with 200 mW of microwave power, the signal amplitude is reduced by at most 15% from the nonsaturation regime, for which amplitude \sim (power)$^{1/2}$. At higher temperatures (> 100 K), the EPR signal begins to broaden, and at room temperature, no signal is detectable. This is due to lifetime broadening of the signal, since the amount of material (∼5 mg of microcrystal powder) was sufficient to detect a signal at room temperature in the absence of line broadening. Magnetization measurements using a superconducting quantum interference device (SQUID) magnetometer also reveal that these nanoparticles are paramagnetic between 5 and 300 K, and no hysteresis was observed at 5 K.

It is interesting to note that the EPR signal disappeared after the [Au$_{25}$(SR)$_{18}$]$_0$ nanoparticles were treated with a reducing agent (aqueous NaBH$_4$). The reduced nanoparticles were determined to be an anionic form of the Au$_{25}$ nanoparticle, [Au$_{25}$(SR)$_{18}^-$], which has a structure similar to that of the [Au$_{25}$(SR)$_{18}$]$_0$ particle except for the charge state.13,14 When the [Au$_{25}$(SR)$_{18}^-$] nanoparticles were treated again with H$_2$O$_2$, the EPR signal was recovered. Therefore, the paramagnetism in the Au$_{25}$ nanoparticles can be switched on or off simply by controlling the charge state of the nanoparticle (Figure 2A). This reversible switching behavior is indeed quite intriguing, and it is of particular importance to find out the origin of the magnetism in these gold nanoparticles.

Figure 1. EPR spectra of [Au$_{25}$(SR)$_{18}$]$_0$ for the conditions listed. Simulation parameters: $g = (2.556, 2.364, 1.821), g$ strain ($\sigma_g = 0.03, 13$ equivalent $I = \frac{1}{2}$ nuclei with $A = (71, 142, 50)$ MHz.

1 Carnegie Mellon University.
2 Kansas State University.
3 Northwestern University.

10.1021/ja809157f CCC: 40.75 © 2009 American Chemical Society
of the orbital angular momentum would vanish if the particle did not have orbitally degenerate ground states.

The approximate axial symmetry observed in the EPR experiment can be explained by considering a superatom model of the nanoparticle. The [Au25(SR)18]0 anion may be viewed as containing eight delocalized electrons in an icosahedral core, which is a common magic number for superatom clusters.16 (It should be noted that the 18 thiolate ligands formally consume 18 of the 25 gold 6s valence electrons.) Projection of the triply degenerate HOMO electronic states onto spherical harmonics shows that the HOMO level has P character;16 hence, an electronic shell structure of 1S21P6 is predicted for the anionic nanoparticle. The corresponding neutral particle, [Au25(SH)18]0, is expected to have an electronic shell structure of 1S21P5, which exhibits the axial symmetry of the unfilled P shell (Figure 2C,D). The singly occupied P orbital possesses two lobes and a node at the center of the icosahedral core, and each lobe involves three gold atoms in the icosahedral shell (Figure 2D). The electron density falls primarily in the Au13 core and is mainly contributed by the Au 6s atomic orbitals in the Au13 core (with some contribution from 3p electrons on the sulfur atoms).

The absence of hyperfine splitting in the EPR spectra of [Au25(SR)18]0 is remarkable given the large number of Au atoms in the particle. Free atomic Au0 with a valence 6s1 configuration has a large hyperfine coupling constant from the 197Au nucleus ($I = \frac{1}{2}$) of $A_{iso} = 3138$ MHz.17 Isolated Au0 adsorbed onto MgO films displays an $S = \frac{1}{2}$ signal with $g = (2.07, 2.07, 1.99)$ and a large isotropic hyperfine constant of $A_{iso} = 1405$ MHz.18 Small organic complexes (e.g., with ethylene) of trapped Au0 in an argon matrix show either a large hyperfine constant [e.g., $A_{iso} = 1725$ MHz with a g tensor of (1.98, 1.95, 1.78) for monoethylene] or a much smaller value [e.g., $A_{iso} = 89$ MHz with a g tensor of (2.18, 1.98, 1.84) for bisethylene].19 The reduction in the hyperfine interaction in going from monoethylene to bisethylene is due to a switch in the orbital containing the unpaired electron (from Au sp in the case of monoethylene to Au p in the case of bisethylene).19

The hyperfine splittings in the EPR spectra of solids can vanish as a result of exchange narrowing, but the absence of hyperfine features in the solution samples of [Au25(SR)18]0 suggests this is not the case. On the other hand, the hyperfine constant can be reduced significantly, as demonstrated by the mono- and bisethylene Au complexes, when the unpaired electron occupies an orbital lacking significant s character19 (i.e., the unpaired spin has a negligible spin density at the nucleus, so the Fermi contact contribution to A_{iso} disappears).20

To extract more information from the EPR results, we performed a simulation of the EPR spectrum for [Au25(SR)18]0 in CH2Cl2/ toluene (Figure 1, middle profile). This simulation employed an $S = \frac{1}{2}$ center with $g = (2.56, 2.36, 1.82)$ and 13 equivalent Au nuclei from the inner core of the particle. For $A_{iso} \leq 100$ MHz, the simulation matches the experimental spectrum. This value is an upper limit; the inclusion of greater g strain (σ_g) combined with smaller values of the hyperfine constant does produce the same simulation. For $A_{iso} > 100$ MHz, either the line width is too broad or the simulation shows resolved hyperfine splitting from the 40 lines. The result is similar with inclusion of more Au nuclei. The DFT-calculated isotropic hyperfine coupling constant A_{iso} for [Au25(SH)18]0 shows that the Au13 shell of the icosahedral core possesses the largest values, which range from 36.0 to 56.4 MHz (Table 1). In contrast, the gold atoms in the −S−Au−S−Au−S− staples and the central Au atom in the core have small hyperfine constants (<12.5 MHz; Table 1). Interestingly, the largest A_{iso} values in the 12-atom icosahedral shell of the Au13 core correspond to

Figure 2. (A) Reversible conversion between the neutral and anionic Au25(SR)18 nanoparticles. (B) DFT-calculated Kohn–Sham orbital energy-level diagrams for the neutral and anionic nanoparticles, respectively. (C–D) Views of the Kohn–Sham HOMO for [Au25(SH)18]0 at the LB94/XaTZP level of theory. The HOMO possesses two lobes and exhibits distinct P-like character. (D) is rotated relative to (C) to show one of the lobes (contributed by three Au atoms in the icosahedral shell). Color code: purple, Au; yellow, S; white, H.
Table 1. Isotropic Hyperfine Constants and Spin Density Distribution for a Model Au25(SH)18 Nanoparticle Calculated at the LB94/TZP Level of Theory (Since the [Au25(SR)18]+ System has C3 Symmetry, Only the Unique Values Are Shown)

<table>
<thead>
<tr>
<th>Au atom location</th>
<th>Aiso (MHz)</th>
<th>spin density</th>
</tr>
</thead>
<tbody>
<tr>
<td>central atom</td>
<td>1.5</td>
<td>0.0564</td>
</tr>
<tr>
<td>icosahedral shell</td>
<td>36.0</td>
<td>0.0351</td>
</tr>
<tr>
<td></td>
<td>36.9</td>
<td>0.0374</td>
</tr>
<tr>
<td></td>
<td>37.5</td>
<td>0.0514</td>
</tr>
<tr>
<td></td>
<td>40.0</td>
<td>0.0453</td>
</tr>
<tr>
<td></td>
<td>47.4</td>
<td>0.0371</td>
</tr>
<tr>
<td></td>
<td>56.4</td>
<td>0.0531</td>
</tr>
<tr>
<td>six staple motifs</td>
<td>-0.7</td>
<td>0.0023</td>
</tr>
<tr>
<td></td>
<td>2.9</td>
<td>0.0027</td>
</tr>
<tr>
<td></td>
<td>4.8</td>
<td>0.0036</td>
</tr>
<tr>
<td></td>
<td>9.3</td>
<td>0.0112</td>
</tr>
<tr>
<td></td>
<td>12.0</td>
<td>0.0122</td>
</tr>
<tr>
<td></td>
<td>12.5</td>
<td>0.0129</td>
</tr>
</tbody>
</table>

The Au25(SR)18 nanoparticle can indeed be considered as superatomic. The superatom concept was originally proposed for gas-phase small molecules and later extended the superatom picture to account for the closed electronic shell structure of gold—phosphine and gold—thiolate clusters.

Taken together, the results of this work unambiguously demonstrate the intrinsic magnetism in the Au25(SR)18 nanoparticles and that the paramagnetism is reversibly switchable through control of the charge state of the nanoparticle. DFT calculations reveal that the unpaired spin is mainly distributed in the Au13 core and exhibits axial character. EPR studies imply unusual magnetic properties of the particle in which hyperfine splitting plays little or no role as a result of the P-state nature of the unpaired spin density and its delocalization over many gold atoms. All of these results suggest that the Au25(SR)18 nanoparticle is best considered as a ligand-protected superatom. The intrinsic magnetism in the [Au25(SR)18]+ nanoparticles and the reversible switching render these nanoparticles particularly useful as paramagnetic probes. In addition, this study provides a foundation for understanding the size dependence of magnetism in gold nanoparticles that should be amenable to further analysis using crystallographically characterized nanoparticles and electronic structure theory.

Acknowledgment. G.C.S. acknowledges NSF Grant CHE-0550497. C.M.A. acknowledges startup funding from Kansas State University. M.P.H. acknowledges NIH Grant GM 77387. R.J. acknowledges CMU startup funding and Air Force Grant 9550-07-1-0245.

Supporting Information Available: Experimental details. This material is available free of charge via the Internet at http://pubs.acs.org.

References