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ABSTRACT A quaniitative interpretation
is presented for EPR specira from
integer-spin metal centers having large
zero-field splittings. Integer-spin, or
non-Kramers, centers are common in
metalloproteins and many give EPR
signals, but a quantitative understand-
ing has been lacking until now. Hetero-
geneity of the metal's iocal environ-
ment will result in a significant spread in
zero-field splitings and in broadened
EPR signals. Using the spin Hamiltonian
#.-8-D-5+85-9g-Band
some simple assumptions about the
nature of the zero-field parameter dis-

triputions, a lineshape model was
devised which allows accurate simula-
tion of single crystal and frozen solution
spectra. The model was tested on sin-
gle crystals of magnetically dilute fer-
rous fluosilicate. Data and analyses
from proteins and active-site models
are presented with the microwave field
B, either parallel or perpendicular to B.
Quantitative agreement of observed
and predicted signal intensities is found
for the two B, orientations. Methods of
spin quantitation are given and are
shown to predict an unknown concen-
tration relative to a standard with

known concentration. The fact that the
standard may be either a non-Kramers
or a Kramers center is further proof of
the model's validity. The magnitude of
the splitting in zero magnetic field is of
critical importance; it affects not only
the chance of signal observation, but
also the quantitation accuracy. Experi-
ments taken ai microwave frequencies
of 9 and 35 GHz demonstrate the need
for high-frequency data as only a frac-
tion of the molecules give signals at 9
GHz.

INTRODUCTION

In recent years, a number of novel electron paramagnetic
resonance (EPR) signals from iron proteins with integer
spin have been reported in the literature. Integer-spin
resonances have been observed from the mononuclear
ferrous sites of myoglobin (Mb) (1) and transferrin (2),
the two-iron sites of hemerythrin azide (3), methane
monooxygenase (4), the three-iron sites of reduced ferre-
doxin I1 (5. 6) and aconitase (Hendrich, M., unpublished
result), and the iron-copper sites of cytochrome ¢ oxidases
from beef heart (2, 7, 8) and yeast (9). In previous work
we have presented EPR data on mononuclear ferrous
complexes (10), and in this paper we give a detailed
interpretation of integer-spin EPR spectra and discuss
methods of spin quantitation. We also present unpub-
lished spectra of several of the proteins mentioned above.

EPR spectra can be assigned to one of two classes
depending on the number of unpaired electrons involved.
The first class, comprised of spin centers having an odd
number of electrons and thus half-integer spin, is referred
to as Kramers centers. As a result of the time reversal
invariance of the electrostatic Hamiltonian, ie., in the
absence of magnetic interactions, Kramers’ theorem
states that a center with an odd number of electrons must
have at least doubly degenerate spin states. The time-
conjugate, degenerate spin states are referred to as Kram-
ers doublets. An external magnetic field removes the time

reversal invariance and splits the Kramers doublets
linearly with field strength B by an energy d¢ = g88, and
the resonance condition d¢ = v becomes

8e = hv = gfB (1)

For an X band spectrometer (Av = 0.3cm™"), the reso-
nance condition (Eq. 1) is satisfied for g = 2 with B ~ 300
mT.

The second class of EPR spectra arises from paramag-
netic centers having an even number of unpaired electrons
and thus integer spin; they are referred to as non-Kramers
centers. This class can be further divided into two sub-
classes. (a) Biradical organic triplets and metal centers
with fine structure energies small relative to the Zeeman
interaction. This subclass can be treated with methods
applicable to half-integer spin centers (11) and shall not
be discussed further. (b) Metal centers with fine structure
cnergies large relative to the Zeeman interaction. We will
focus on the latter subclass and refer to the observed
spectra as “integer-spin EPR signals.” Of interest in this
work are integer-spin signals that are generated by micro-

~wave transitions between a pair of levels in a spin multi-

plet with a splitting A in zero field that satisfies the
condition A < hv. Because the pair of levels is not
degenerate in zero field, a magnetic field will increase the
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splitting of the levels quadratically. As we shall sec in the
theory section, the resonance condition for such non-
Kramers doublets is

(hv)* = (BB)" + &7, (2)

where g is an angle-dependent effective g-value. Thus the
lineshape of non-Kramers spectra is expected to differ
markedly from spectra of Kramers systems, where the
doublets split linearly with magnetic field.

The biologically important transition metals V, Mn,
Fe, Co, Ni, Mo occur in even and odd valence states and
may, in particular, assume spin S = lor §' = 2. The same
spin states are also known to occur in some exchange-
coupled metal clusters. Integer-spin EPR of metallopro-
teins, however, has not been fully exploited for a number
of reasons. (a) Observation of resonance in non-Kramers
doublets depends critically on the condition Av > A, which
may not be satisfied in many cases of interest with
commonly available EPR frequencies (9 and 35 GHz).
(b) Signals are generally observable near helium temper-
atures only because of rapid spin relaxation rates. (¢) The
resonances are generally quite broad due to random
orientation of the molecules and due to a spread in the
parameter A. As 2 consequence, the signals are small and
hard to detect even if the spin concentration is high. (d)
Computer simulations are needed to interpret the spectra
and to quantitate the number of spins as there is no
simple, intuitive relation between g-values and lineshapes.
(e) Few previous studies exist with which to compare new
data.

We have had some success in understanding integer-
spin EPR spectra from iron complexes, thus we will
concentrate on iron species. We have shown that EPR
signals of myoglobin (Mb) can be observed from differ-
ence measurements of diamagnetic MbCO and its photo-
product Mb*(CO) (10). Previous work in the field, for
the most part, has dealt with well-defined single crystals,
e.g., FeF, (12) and ferrous fluosilicate (FFS) (13, 14).
We have verified our simulation routine on magnetically
dilute single crystals of FFS and will briefly discuss the
results. In addition, we will present work on frozen
solutions of aqueous iron(II), iron(II) proteins, and
active-site models,

MATERIALS AND METHODS
Sample preparation

Tron doped zinc flucsilicate crystals were grown from a sojution contain-
ing 31.9% hydrofluosificic acid in H,O (H,SiF,, Baker Chemical Co.,
Phillipsburg, NJ} and a saturating amount of the proper ratio of zinc
(Fred Portz Jr. Associates, Waukasha, W) to iron {Mallinckrodt Inc.,
St. Louis, MO; 95% assay) metal, The metal was added 10 the acid until

1o reaction was observed, followed by filtering ofl the cxcess metal. The
solution was placed in a lightly capped bottle and crystals were available
a few days later. The crystals were mounted on quartz fats and aligned
visually under a microscope; a small amount of the mother liquor held
the crystal in place. The mounted crystal was promptly frozen in liquid
nitrogen, An atomic absorption measurement on a crystal of what will
be referred to as 4% iron doped zinc Auosilicate found an iron atomic
percentage of 3.7.

Magnetically dilute solutions of hexaquo ferrous jons were prepared
by dissotving an appropriate amount of either FeSO, - TH0 (Mallinc-
krodt Inc.) or FeCl, - 4H,0 (Fisher Scientific Co., Pittsburgh, PA) into
doubly distilled water. Scveral identical samples were reduced with
Na,S,0, (Fisher Scientific Co.), and iren concentrations were deter-
mined by plasma emission spectroscopy. Aqueous solutions of magneti-
calty dilutc ferrous ethylenediamine tetraacetate (FeEDTA} were pre-
pared under argon atmosphere with Na, EDTA (Sigma Chernical Co.,
St. Louis, MO; 99% assay) and FeSO, - TH;0. All solutions were frozen
and stored in liquid nitrogen shortly after preparation.

Stock solutions of sperm whale metMb (whale skeletal muscle tissue,
type 1I; Sigma Chemical Co.) were prepared in 50 mM KP; buffer,
pH - 6.85. DeoxyMb was prepared by cxchanging the gas over a
metMb solution with argon followed by reduction with a small amount
of Na,$;0,. CarbonmonoxyMb (MbCQ) was prepared similarly except
the exchange gas was CO. An optical spectrum of the MbCO sample
verified CO binding. OxyMb was prepared by exposing a deoxyMb
sample to oxygen. The solutions were frozen, stored in liquid nitrogen,
and kept in the dark until measurements were made. Control samples of
deoxygenated and CO-exchanged buffer containing no Mb were pre-
pared in a similar fashion.

The model heme complex Fe(Il) 2-methylimidazole meseo-tetraphe-
nylporphyrin (FeTPP) (15) was a gift from Prof. Christopher Reed
(University of Southern California). FeTPP crystals were sealed in an
EPR sample tube with wax under a nitrogen atmosphere. Two similar
mode! heme compounds, Fe(II) imidazole protoporphyrin 1X CO and
Fe(II} 2-methylimidazole protoporphyrin IX CO, were prepared in an
aqueous, 50% glycerol solution (16) employing the methods of the
MbCO preparation.

The yeast (17) and beef heart cytochrome ¢ oxidases were gifts from
Dr. Hsin Wang (California Institute of Technology). The azide complex
of hemerythrin was a gift from Prof. Donald Kurtz (University of
Georgia).

A number of the solution samples were prepared in glycerol (Fisher
Scientific Co.; 99% assay); the glycerol was added to the solution before
the reduction or deaeration step.

Instrumental

X band (9 GHz) EPR measurements were performed on an ER 200D
spectrometer {Bruker Instruments, Inc., Billerica, MA) using a liquid
helium flow cryostat (Oxford Instruments, Oxford, UK). Spectra were
digitally recorded on an ASPECT 2000 computer. When recording
spectra for purpose of comparison with simulation, all instrumental
parameters (microwave power, field modulation, sweep rate, cic.) were
appropriately varied to avoid instrumental artifacts. The spectra
reported were generally recorded in a nonsaturating microwave power
regime, i.e., we verified in each case the proportionality: signal inten-
sity ~ (microwave power)'/2.

The microwave frequency was measured with a model 6245A
frequency counter (Systron Donner, Concord, CA) and the DC mag-
netic field was calibrated with an ER 035 NMR gaussmeter (Bruker
Instruments, Inc.). The gaussmeter is not sensitive to magnetic fields

" <80 mT. At a field of <5-10 mT, the field regulation does not function,

causing an anomaly in the EPR spectrum.
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A model E-236 bimodal cavity (Varian Associates, Inc., Palo Alto,
CA) was used to generate the microwave magnetic fields B, | B and
B, 1 8. The frequencies of the two modes of the cavity occasionally
coincide when the cavity is loaded with the quartz cryostat and sample
tube. To separate the modes (2), two quartz rods (1-mm diameter) were
mounted on a quartz tube and placed in the cavity via the illumination
port. The electric ficld at the quartz rods is greater in the B, . B mode,
causing a decrease in frequency of the perpendicular mode. The
resulting frequency separation was typically 50 MHz and no appre-
ciable mode overlap occurred. The magnitude of B, at cavity center was
measured using the method of perturbing spheres (18, 18a) with the
cryostat and sample tube in place; B, was found to be 0.037 mT (B, | B)
or 0.055 mT (B, L B) at a nominal incident power of 200 mW.

The sample temperature, wherc needed, was determined relative to
the known temperature dependence of the EPR signal of metMb
(D =95 cm™ (19)) and one known temperature point. MetMb was
cither an impurity or purposely introduced by freezing a capillary
containing metMb into the sample.

A light path to the sample was available while the mode separation
rods were in place. The photolysis product Mb*(CO) was prepared by
illumination in situ at 4 K for 30 min, and the time course of the EPR
signals could be monitored during photolysis. The particular light source
(typically 600-W xenon or 150-W tungsten lamp) was found not to be
critical; one would like maximal intensity in the range 450600 nm.

Q band (35 GHz) EPR experiments were performed on a Century-
line spectrometer (Varian Associates, Inc.) using a Heli-Tran liquid
helium flow cryostat (Air Products & Chemicals, Inc., Allentown, PA)
modified to allow immersion of a cylindrical TE;,, cavity into the cold
gas flow. All spectra were taken with By 1 B as the B, | B configuration
was not available. The DC magnetic field was calibrated with a NMR
gaussmeter.

Mdsshaucr spectra were recorded using a comstant acceleration
spectrometer. Isomer shifts are quoted relative to iron metal at 300 K.
The data were fitted with a sum of Lorentzians by using a least-squares
routine.

Magnetization measurements were made using & SQUID SH.E.
VTS-50 magnetometer, with temperature uncertainties <0.1 K. Equiv-
alent EPR and magnetic susceptibility samples were prepared in an
argon atmosphere using DO as the solvent. The samples were stored in
liquid nitrogen and transferred from liquid nitrogen into the helium bath
of the magnetometer as guickly as possible (~1 min).

Computer simulations were written in FORTRAN and runona CDC
Cyber 175 computer. Depending on the simulation criteria, the program
took 1-200 s of CPU time to run.

THEORY
Non-Kramers doublets

The quintet energy levels of the high-spin ferrous ion are
usually parameterized in terms of the spin Hamiltonian
(20):

H, - DS —2)+ E(S:-S)+8B-g-8, (3)

where the first two terms represent the zero-field split-
ting. D and E parameterize the spin energy levels in zero
field and reflect on the symmetry of the metal’s environ-
ment. The exact eigenfunctions and energies of Eq. 3 in

zero field are
{2} = a*(|+2) +1-2))/+2 + a7|0)
|22y = (+2) - 1-2))/+2,
[1°y = 4+1) + =10/ V2,
1"y = (+1) —[-1)/ V2
[0) = a (| +2) +[-2))/+2 - a*l0),
Ey = 2(D? + 3EH'?

E,--D+ 3E (4)
En=-D-3E

Eq = —2(D? + 3E}A,

where a* = ((1 + Df(D? + 3E?)'%)/2)'/%. For the cases
of interest D is large (typically D =~ 10 cm™"), and for E «
D the quintet splits into two doublets, [2°), {2} and |1*},
[1*}, respectively, and a singlet, {0"). No interdoublet or
doublet to singlet transitions are observed with standard
EPR instrumentation (kv =~ 0.3 cm™, By, < 1.5 T) as
the Zeeman interaction is {#,.) < D. Thus, the non-
Kramers doublets are isolated and can be treated inde-
pendently. In the limit of E/D = 'A, on the other hand, the
splitting between the states [2) and [2*}), A, = 2D(2/
3 — 1) = 0.3094D, is the same as that between the
states |1*} and {0'), and if the condition A, < hAv is
satisfied, EPR signals may be observable with B, L B for
transitions between |[0') and [1*) as well. Two previous
reports (2, 20) have treated the rhombic term E of Eq. 3
with perturbation theory. This approach is inappropriate
in ferrous complexes for two reasons. (@) Matrix elements
involving E may easily exceed 10% of the value of those
involving D, causing the perturbation results to be inaccu-
rate. (b) A simple 2 x 2 diagonalization provides exact
energy levels and spin wavefunctions for zero magnetic
field. The case with magnetic field B ¥ 0 is then
straightforward.

A magnetic field B will increase the splitting of the
non-Kramers doublets quadratically as shown in Fig. 1.
The eigenfunctions for both doublets at resonance can be
written as

[k*) = adk™®) + ogfk*), 5

where k = 1, 2 label the |1*} and {2*) doublets, respec-
tively, af = ((1 + A /hw)/2)'?, and A, is the splitting of
the doublet in zero field, A, = 6E and A, = 2[{D* +
3E%)Y? _. D). The notation |[k*) refers to the states|2*)
or |1*} of Eq. 4. To observe resonance, the condition 3¢ -
hv must be satisfied. From the energy splittings given in

_Fig. 1, the resonance condition is

(’"’)2 = A: + (ébsBr)zs (6)
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FIGURE1 Energy levels of a quintet (S = 2) state for the case D » E,
g8, and D > 0. The width of energy levels represents a spread in the
value of E. The states|1*} and|2*} of the two non-Kramers doublets are
eigenfunctions of Eq. 3 as defined in Eq. 5.

where g, = 2kg.a,cos8,a, = 1,and a, = a*. The angle
between B and the z-axis of the molecular frame defined
by Eq. 3 is 8, and B, is the magnitude of the external
magnetic field necessary for resonance. The azimuthal
angle ¢ between the x-axis of Eq. 3 and B does not
significantly affect the resonmance condition as terms
involving ¢ are second order perturbations. This fact can
be seen upon inspection of the zero-field states of Eq. 4. In
first order the x or y Zeeman components can only give
finite matrix elements from states differing by m, = =1,
but the states of the doublets have m,-values which differ
by 0, +2, +4.

A quantum of energy hv can be exchanged with the
microwave field B, cos(2zxvt) if the matrix elements
(k*B, - g - S|k¥) do not vanish. The matrix elements
(k*|s.|k¥) are zero, thus the selection rules for EPR
signals from Kramers centers, dm, = =1, will not give
transitions. Interdoublet transitions obeying dm, = =1
have been observed in the far infrared (21--23). A nonzero
transition probability occurs for B, having finite pro-
jection on the z-axis as the matrix elements (k*|S.|k~ )

“are nonzero. A finite matrix element (k=|S,|k* ) strictly
implies the selection rule ém, = 0 and not ém, = +2, +4,
+8 which have appeared in the literature (6, 24, 25). The
use of ém, > 1 implies muitiple quantum transitions due
to finite matrix elements of { «|[S%|7 ) for n = 2. Using the
golden rule (26) we find the transition probability
induced by the microwave field at frequency » to be

W(») = (guBB1/ Rk ISk — 5e), Q)

where f{v — ».) is a normalized lineshape function for a
spin-packet.

A typical EPR cxperiment will sweep the magnetic
field B using a fixed frequency ». It is convenient,
therefore, to use a lineshape function normalized with
respect to field, f A(B)dB — 1, but use of Eq. 7 requires

f(»)dv = 1 (27). Thus we make a transformation to
magnetic field variabie B and the result is

W(B) = (288, /hYI(k*IS |k )P
- h(B — B,)(dB/dv)p s (8)

Evaluation of the matrix element gives
[k HISJ ) = (kad(Br, 8)/ hoc ). 9

We have not found the conversion of frequency-swept to
field-swept spectra in non-Kramers systems in the litera-
ture (2, 20).

The lineshape function k(B) represents a spin-packet
in magnetic field space. The width of #(B) depends on the
transverse spin relaxation time T, and on the resonance
field. Few experimental measurements of the relaxation
rates of ferrous complexes exist. NMR (28) and
Massbauer (29, 30) experiments find relaxation times for
transitions between the quintet spin states in the range
10°7t0 10*sat T~ 4K.

To make an estimate of the width ¢ of h(B) we use
op = (dB/dr)a, and Eq. 6. For relaxation times T, = T, ~
1 ps, 8 = 0°p = 9 GHz, and B = 30 mT, the width is ¢g <
0.1 mT. In comparison with other broadening mecha-
nisms, the spin-packet linewidth is small, and for simplic-
ity we therefore approximate the lineshape function with
h(B — B,) = 8B — B,). At low magnetic fields the
s-function approximation will not hold, however, as h(B)
will be broad and asymmetric near B, = 0 duc to the
quadratic dependence of the resonance field on frequency.
Combining Eqs. 8 and 9 and using Eq. 6 to calculate
dB/dp, we have

2 A2
| BAB.D) g _B) B>oa (10

WdB) ~ 5 g cos 6

Notice that Eq. 10 diverges when the resonance field B,
approaches zero.

The lineshape mode! discussed so far follows from the
spin Hamiltonian, Eq. 3, and time-dependent perturba-
tion theory. It predicts the angular dependence of the
resonance field correctly, as we have shown for single
crystals of iron-doped zind fluosilicate (10), but it under-
estimates the line width. The dominant source of line
broadening is thought to be a spread in the zero-field
energy levels; it is indicated in Fig. 1 by a finite width of
the levels. An analogous broadening, g-strain, is observed

- in Kramers systems (31) and a comparison to non-

Kramers systems will be discussed for myoglobin.
The excess broadening in integer-spin EPR was first
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noted by Bleaney and Scovil in their work on lanthanides
in ethyl sulfates (32). Baker and Bleaney {33) tried to
model the broadening by adding the ad hoc terms A, S, +

to a spin Hamiltonian without the quadratic terms
DS?and E(S? — §2). Both A, and A, were assumed to be
random variables. These extra terms give rise to an
energy splitting of the correct form, Eq. 6, with A=A+
Ai, but they violate time reversal invariance and give rise
to finite expectation values of $ even in the absence of a
magnetic field. Griffith (34) furthermore argued that one
of the random variables could be eliminated by proper
choice of basis, thus the model of Baker and Bleancy is
unfounded.

The splitting in zero field, A,, is not necessarily a proper
random variable; a better choice might be to adopt a
crystal field mode! of the ferrous ion with the electrostatic
potentials that split the °D orbitals serving as random
variables. In the analogous case of the high-spin ferric ion
Levin and Brill used a distribution of the ‘P orbital
energics to model the zero-field splitting of spin S = 5/2
metmyoglobin (35, 36). They showed that a Gaussian
energy distribution of the P levels leads to a skewed
symmetric distribution in the zero-field parameters D and
E of Eq. 3. Relating the zero-field splitting 4, to the
electrostatic potential of the crystal field model requires
at least three more parameters, and for simplicity we will
stay in the framework of the spin Hamiltonian formalism.
In the following we will assume Gaussian distributions of
the zero-field parameters D and E keeping in mind that
skew symmetric distributions might be more realistic.
The origin of the zero-field parameter distributions,
whether intrinsic and/or artifactual, is not clear. How-
ever, such distributions must be an ensemble property in
contrast to lifetime broadening or superhyperfine interac-
tions which are intrinsic to each molecule.

Simulation of integer-spin spectra

For fixed angle 4, a spread in the energy splitting A, will
result in a family of resonance curves described by Eq. 6
as shown in Fig. 2 a. Molecules with A{Y > Ay, cannot
satisfy the resonance conditions at any magnetic field,
thus only a fraction of the molecules contribute to the
EPR spectrum.

A single crystal spectrum is composed of many overlap-
ping signals of lineshape (B — B,) centered at BY", B,
B, etc. (refer to Fig. 2 a). Now suppose that the proba-
bility of a molecule having rhombicity in the interval E to
E + dE is P(E)dE and the disiribution of D values is
sharp. The contribution of each spin-packed to the total
spectrum at a field B to B + dBis then W(B) P(EMBJE.
Using Eq. 10, an integration over B, and the transforma-
tion of variables E to B, we find the spectral intensity as a

Energy

B
2
| A( -) 82
1
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-
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w : o.3cn!
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1
Br B

FIGURE2 (a)} Fnergy splitting 3 of a non-Kramers doublet as a
function of magnetic field, B, for various values of the zero-ficld splitting
A®™ at a fixed angle 8. The symmetric Lorentzian spin packets, S, in
encrgy space broaden asymmetrically to give h(B) in magnetic ficld
space. No resonance will be observed from spin centers having A® 503
cm~" with an X band spectrometer. (b) Energy splitting 8¢ as a function
of field, B, for a family of non-Kramers doublets having appropriate
values of A and angle # 50 as to resonant at magnetic field B,.

function of magnetic field B to be

n(T, v,
1ui8) = T2 o grnyBIEIP(E), (D)

Vg

where n(T, ».) is the temperature-dependent population
difference of the resonance states. Note that n(T, ».) is
approximately linear in », for a Boltzmann population of
states, thus I4(B) is almost independent of the microwave
frequency. As mentioned above, we use a Gaussian distri-
bution to represent the spread in zero-field parameters.
Fig. 3 shows plots of 1,,(B) for 8 = 0° and 8 = 60° with
various widths og and centers E, of P(E) = (l/
(27)%6g) exp {— [(E — Eq)/ V20g]*}. If we consider an
isolated non-Kramers doublet and assume g, to be
known, then the only adjustable parameter in Eq. 11 is the
rhombicity E. Therefore, we can in principle determine
the exact nature of the zero-field distribution P(E) from
an experimental spectrum of a single crystal.

We also want to simulate powder spectra, because
protein crystals are not always available and can have
properties differing from the protein in solution. At a
given magnetic field B, the powder spectrum is composed
of signals from many different molecular orientations and
zero-field parameters, as shown in Fig. 2 b. If we assume
random molecular orientations, the contribution to the
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aEx=0 b Es = 0.06K
ax = 0.08K
/—'Oi » 0.08K
~
/m = 0.08K
100 200 300 100 200 300
B(mT) B{mT)

FIGURE3 Spectral intensity, X" ~ h{B), from Eq. 11 for center
E-values (a) E; = 0 and (b) E; = 0.06 K. Each graph contains two scts
with 8 = 0° (_) and 60° (...), respectively, of four curves with
distribution widths ag = 0.0, 0.02, 0.04, and 0.08 K (curves with largest
x"(B = 0) have o = 0.08 K). We have assumed the orientation By i B,
k = i, g = 2.38, and », = 9.1 GHz. The parameters arc close to those
used for simulation of the iron doped zinc flucsilicate spectra. 1 cm™' =
1.439 K.

intensity at field B to B + dB is W(B)P(E)dB,
. dE sin 6d8, and from Eq. 11 the spectral intensity is

148) - L5 k(g pyny

€

. f BIE|P(E) sin ¢ d6". (12)
&2)

The integral is constrained by the resonance condition
and a closed form expression has not been found. How-
ever, Eq. 12 can be evaluated numerically, for example
with a contour method (37). Distributions in both D and
E are handled analogously. Unless noted, the spectral
simulations in this paper are generated with diagonaliza-
tion of the 5 x 5 quintet representation of #,. The g
values for each diagonalization point are determined to
second order in spin-orbit coupling with Eq. 2 of reference
10.

Parallel vs. perpendicular B,
orientation

EPR spectra of non-Kramers systems can be observed
with either B, § B or B, 1 B. According to Eq. 7 the
transition probability is proportional to B3, where By, is
the component of B, along the molecular z-axis. The
signal intensities Wi and W} for B, L B and B, | B,
respectively, are therefore related by

Wi(B) = Wl(B) sin? (2av.t) tan® 4, a3) -

where the time averaged quantity sin® (2av.t) equals 'A.

In principle, B, || B is preferable for integer-spin systems.
As indicated in Fig. 3 for a single crystal, I,(B}), is largest
for # = 0; for randomly oriented molecules typical simula-
tions show peak values of dx”/dB that are roughly a
factor of three larger for B, | B than for B, L B, where B,
and all other parameters are kept the same. In practice,
the latter condition may not apply. In the dual mode
cavity described under Methods, for instance, B, and the
filling factor depend on the B, orientation.

The B, | B orientation not only enhances the signal-
to-noise ratio of non-Kramers doublets, but it also attenu-
ates impurity signals due to Kramers doublets. The
transition probability vanishes for the latter in parallel
fieid, B, | B, as can be seen from Eq. 3.10b of reference
20. In practice, By is not perfectly parallel to B due to
misalignment and finite sample size, and typical attenua-
tion factors for the cavity described in the Methods
section range from 200 to 1,000. Ideally, spectra should
be observed with both B, orientations to verify that Eq. 13
applies, as agreement with Eq. 13 is clear proof of an
integer-spin systemt.

Quantitation

We have obtained quantitative agreement of spin counts
between various samples using two methods. As usual, we
compare the spectrum of a standard sample having a
known number of spins, Ny, with that of a sample having
an unknown number of spins, N,. Since non-Kramers
EPR signals at X band usually represent only a fraction of
the spins, the quantitation has to rely on simulations.
Method 1 relates the amplitudes of the simulated spectra,
S, and S,, to the corresponding features £, and E,
(usually zero-to-valley) of the experimental spectra,
where E is adjusted for gain, microwave power, popula-
tion difference, etc. The unknown number of spins of a
sample then is

Ny = Nyg(E, [ Eg) (Sya/Sy)- (14)

Concentration may be used in place of spin count N.

Method 2 uses double integration of dx”/dB to deter-
mine the unknown number of spins relative to a standard,
where the standard may be a Kramers center. The net
microwave power absorbed at resonance, due to transi-
tions between statesi} and| j}, is

dP; = Qmef/RIn(T, v}

(iBy - g - S|/) PAw — v )AN(B. ¢ D, E), (15)

where dN(6, ¢ D, E) is the number of spins obeying the
resonance condition, Eq. 6. We shall now derive expres-
sions for the total number of spins of Kramers and
non-Kramers centers.

For Kramers centers, we assume the lineshape function
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and zero-field parameter distributions are sharp. The
spectrum for a field-swept experiment of an axially
symmetric site is then

I*X(B)dB = (xaNow./ R)n(T, v )B"
A(ilB, - g - S|j }?8(B — B,)(dB/dv)dcos 8, (16)

where « i an instrumental constant and N, is the total
number of spins. For simplicity, we shall replace the
transition probability with an angle independent average
(27). Thus, for an effective spin 8’ = Y signal,

B(ilBy - g - S1j)FdB/dv = BhBIgue/4, (17

where g, is given by Eq. 6 of reference 27 and h is
Planck’s constant. Combining Egs. 16 and 17, and inte-
grating gives the total number of spins for a Kramers
center,

1
= ax v BBIN(T, v.) uve

NE® [ rx@Byds. (18

For a non-Kramers center the problem is immediately
complicated by the effects of the zero-field parameter
distribution. For simplicity, we assume the distribution in
D-values is sharp (a distribution of D-values will not
affect the lineshape of the k& = 1 non-Kramers doublet,
because the splitting in zero field, A, = 6E, does not
depend on D) and concentrate on determining N, for a
single crystal. From Eq. 15, the field-swept spectrum for a
non-Kramers center is

IEK(B)dB = (2xaNp /hin(T, .v,:),B2
KilB, - g - S1j)8(B — B,)(dB/d) P(E)E. (19)

Combining Eqs. 9 and 19, and integrating gives the
number of spins for a non-Kramers center,

NNK h

0 =mflf‘."(8)(smi)da, (20)
1 1 Ye

where we have assumed B, | B. The splitting in zero field,
A,, can be calculated for each spectral point with Eg. 6.
Egs. 18 and 20 allow quantitation of an unknown sample
concentration relative to a standard that may be either a
Kramers or non-Kramers center.

RESULTS
Iron-doped zinc fluosilicate

X band EPR spectra and simulations of a single crystal of
(Zn/Fe)FS are displayed in a previous paper [101.' A
broad negative dip from the |1*} doublet of a quintet is

“The number of spins stated in Fig. 2 of reference 10 should be 7 x 10",
not 10",

observed with a turning point at 8 ~ 140 mT. Simulations
suggest that 60% of the molecules satisfly the inequality
A, < hv. To test integration method 2, we compared the
spin counts of a (Zn/Fe)FS crystal against a frozen
solution of metMb. The number of iron-atoms in the
crystal was determined from the crystal dimensions and
the unit ceil volume (38); the concentration of iron in the
solution of metMb was determined optically using €0 =
157 cm~' mM™". The spectra were integrated to give x”,
then integrated a second time in accordance with Eq. 18
for metMb or Eq. 20 for (Zn/Fe)FS. Taking the metMb
sample as the standard, the predicted number of iron
atoms in the (Zn/Fe)FS sample was found to be within
15% of the known number.

Q band EPR spectra and simulations of a single crystal
of (Zn/Fe)FS are shown in Fig. 4. All molecules have
A, < hv as at B = 0 we find x” = 0. The lineshapes are
poorly defined because of the low sensitivity of the
spectrometer. The cight-line cobalt impurity signal,

=
28° J 80°
D fmm— 3 E_
W —— 4
-«—-ﬂ—'“ﬂ[‘\, 220
_M/‘ﬂ/& 2e°
o
=
=
k=l

«w_%‘_’/ql“
“‘\J\ﬁc

v T L | SR 1
300 500 J00 900 1100
B(mT)

FIGURE 4 (Q band (35 GHz) EPR spectra and simulations of a single
crystal of 4% (Fe/Zn)FS at T = 15 K and various angles § using B, L B.
The absorption spectra x* (...) are numerical integrations of the
appropriate dx”/dB spectra. Simulation parameters: Eq = 0.06 K, o¢ =

0014 X, g, = 2.38. Instrumental parameters: microwave, 35.00 GHz at

7 mW; modulation, 100 kHz at 2 mT; gain, 200; dB/de, 8.3 mT/s;
filter, 0.1 5. The cctet signal at B ~ 500 mT is from a cobalt impurity.
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which was seen at X band as well (10), is relatively strong
since the spectrometer operated with B, 1 B. In the upper
part of Fig. 4, simulations of x" for two orientations are
overlaid on the integrated data. The simulation parame-
ters are given in the figure caption; the best value of the
Gaussian width, oz = 0.014 K, is considerably smaller
than that required to simulate the X band data, g = 0.06
K. In view of the low quality of the Q band spectra it is not
clear yet if these differences in oy, are significant.

Hexaquo Fe'?

Fig. 5 shows EPR spectra of a frozen solution of 10 mM
iron sulfate prepared under argon and quenched in liquid
nitrogen. The lineshape did not change noticeably when
the concentration was reduced by a factor of 4, thus we
conclude the samples were magnetically dilute (i.e., mag-
netic dipole interactions between iron atoms were negligi-
ble). In addition, no significant lineshape difference was
observed from a sample with 50% glycerol. A significant
lineshape change in the low field region (B < 80 mT) of
the spectra is observed, however, when the microwave
power is raised to 200 mW at 4 K or 2 mW at 2 K,
suggesting partial saturation of the signal.

The troughs of dx”/dB of Fig. 5 correspond to an
effective g-value of 8 suggesting that the signals are due
to resonance from the [2*} doublet. The assignment is

a BB

dy*/dB

bB/LB

I

1 1 1
0 100

1

1
400 500

200 300
B(mT)

FIGURE5 EPR spectra (_) and simulations (.. .) of a frozen aqueous
solution of §0 mM FeSO, at T = 4 K using (¢) B, | B and (5) B, L B.
Simulation parameters: D = —8 K, Eg = —2.05K, 0g = 060 K, gy =
(2.00, 2.06, 2.14). g, represents the g tensor values calculated with
second order spin-orbit coupling using zero-ficld parameters D and E,
(10). Instrumental parameters: microwave, 9.1 GHz at 2 mW (unsatu-
rated); modulation, 100 kHz at 0.8 mT,,: gain, 4 x 10%; dB/dr, 3.3
mT/s; filter, 0.5 s. The large signal in the field range 200 < B < 500 mT
for B, 1+ B is from a ferric impurity.

TABLE 1 Quadrupole splitting AE,, isomer shift &,
and line width T in milimeters per second of a frozen
solution of 10 mM FeS0O,

T AE, Bee T

K

4.2 3.6 1.40 0.42
100 3.34 1.38 0.42
150 3.28 1.34 0.40
200 3.21 1.32 0.45

supported by the simulations shown in Fig. 5,>and we find
quantitative agreement of the relative signal intensities
between the B, || B and B, L B orientations, i.c., Eq. 13 is
obeyed after correction for differences in microwave
power and the filling factor. Attempts to simulate the
spectra under the assumption of resonance from the |[1*)
doublet, however, were unsuccessful. For temperatures
T < 20 K the EPR signal intensity is inversely propor-
tional to temperature; thus the resonance is from a ground
state spin doublet. An accurate D value measurement
from depopulation studies of the doublet can not be made
as the lineshape changes near 30 K. A reassessment of the
baseline position in our earlier work (10) has changed the
parameter set of bestfitto D = —~8 K, Ey = —2.05K,0e =
06 K.

Upon temperature cycling of a frozen solution of
FeSOQ, from 4 to 200 K and back to 4 K, the § -~ 2 EPR
signal changed in shape and intensity. A magnetic suscep-
tibility measurement of a sample treated exactly in the
same manner showed no change.

The results of Méssbauer measurements on a frozen
aqueous solution of 10 mM FeSOy in zero field as a
function of temperature are given in Table 1.

The spin quantitation of a FeSO, solution sample with
known Fe*? ion concentration was compared with the
Fe*? ion count of the (Zn/Fe)FS crystal via quantitation
methods 1 or 2. The predicted concentration found for
FeSO, was only 35% of the actual value, thus the agree-
ment is not good. Most of the error presumably comes
from the uncertainty in the fraction of ions that satisfy the
condition A, < Av and thus are observable by EPR. For
the parameter set adopted in Fig. 5 this fraction is ~5%
only.

EPR measurements on frozen solutions of 10 mM
FeCl, werc also performed. Surprisingly, a significant
difference between FeSQO, and FeCl, is observed in both

*The noisc in the simulations at Jow magnetic field is a consequence of
the inverse B dependence of the transition probability, Eq. 10. Simula-
tions with less noise near B = 0 can be generated using perturbation

. theory, but the inaccuracies of the perturbation method have yet to be

determined.
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B{mT)

FIGURE6 () EPR spectra of frozen aqueous solutions of 10 mM FeCl,
() and 10 mM FeSO, (.. .} a1 T = 4 K using B, | B. The amplitude of
the FeSO, signal is artificially reduced by 20% to demonstrate lineshape
differences. (b} Overlay of the FeCl; spectra in {g) with simulation
(...). Simulation parameters: D = —8 K, By = —2.05K, 0¢ = 0.52K,
g = (2.00, 2.06, 2.14}. Instrumental parameters: microwave, 9.12 GHz
at 2 mW (unsaturated); modulation, 100 kHz at 0.8 mT,; gain, 108
dB/dr, 2 mT/s; filter, 0.5 5.

intensity and lineshape. The experiments were repeated
many times on several different samples. A comparison is
shown in Fig. 6 a of samples having concentrations of
Fe*? ion equal to within 3%, as determined by plasma
emission and correction for Fe*? impurity by EPR quanti-
tation. The FeCl, spectrum of Fig. 6 b is 20% weaker and
slightly broader. Good simulations of the FeCl, spectra
are found with the parameters D = —8 K, E; = —2.05K,
and oz = 0.52 K. The reduced intensity of the FeCl,
spectrum is predicted by the simulation, but another
parameter set with an equally good fit to the data was
found that predicted the intensity of the FeSO, and FeCl,
signals to be approximately equal. A sample of FeCl, with
75% glycerol did show a different EPR spectrum, resem-
bling that of FeSO,. '

{ron(ll)
ethylenediaminetetraacetate
(FeEDTA)

Experiments similar to those done on hexaquo Fe*? were
performed on ~10 mM aqueous solutions of FeEDTA.
EPR and magnetic susceptibility results are shown in
Figs. 7-9. No significant EPR lineshape difference was
observed when the iron concentration was lowered by a
factor of 4, thus the samples are magnetically dilute. In
addition, no significant lineshape difference was observed

\/f"_ o8

dy/dB

bB/.LB

)

0 500

I

600 200
B(mT)

L
300

FIGURE? EPR spectra () and simulations (. . .) of a frozen aqueous
solution of 10 mM FeEDTA in 75% glycerol at T ~ 4 K using (2) B, iB
and () B; L B. Simulation parameters: D —= —13 K, Ey = — .50 K,
ag = 0.15 K, g = (2.00, 2,04, 2.20). Instumental parameters: micro-
wave, 9.109 GHz {2) or 9.142 (b) at 2 mW (unsaturated); moduiation,
100 kHz at 0.8 mT,,; gain, 5 x 10% dB/ds, 1.5 mT/s (a) or 2.5 mT/s
{b): filter, 0.5 s (a) or 0.2 5 (b). The ratio of signal strengths /L of the
simulations obeys Fq. 13 but does not match the data. The signal at B ~
150 mT (g = 4.2) in B, L B is a ferric impurity.

from a sample with 75% glycerol. A least-square fit of
the magnetic susceptibility data gives approximately
the same zero-field splitting parameters, D = +13 K and
E/D = 1, as obtained for the frozen solution of FeSO,
(10). (The sign of D is ambiguous at E/D = '/, where the
zero-field term of the spin Hamiltonian can be written as

TIK)
13.8
1.0
L)
Q
Z 83
2
g
K4
E 55
t
o
=
2.8
° d [] 1
0 Ol 028 04z 056 0.0
VTIK™"

FIGURES Magnetic susceptibility measurements and simulation of a
frozen solution of 12 mM FeEDTA in D,O at various magnetic fields. A
least-square fit of the data to the spin Hamiltonian, Eq. 3, gave D =
+13+ 1 K, E = 243 + 05 K, 0.92 + 0.2 gmol of iron, g -
(2.122,24,2.00). The total iron content, determined by weight of
sample ingredients, was 0.94 umol.
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Tdx"/dB

FIGURES Temperature dependonce of the FeEDTA EPR signal of
Fig. 7 a. Signal intensity is determined from the depth of the valley at
B =~ 40 mT. The temperature was determined from the known tempera-
ture dependence of an added metMb sample. The solid lines assume a
Boltzmann population of levels with () D = —10K, E = -1 K, (b)
D=-16K,E=-12K,or{c) D= -20K,E ~ --14K.

[2D/3}{S? — S2]. A coordinate system rotation of 90°
about the x axis will change the sign of D, but the two
coordinate systems are indistinguishable in an unoriented
sample.) In contrast, the EPR spectra of FeEDTA differ
markedly from those of the FeSO, solution. The FeEDTA
spectra are broader, have shifted to a lower magnetic
field, and are approximately four times stronger.

The low field region (B < 40 mT) of the FeEDTA
spectrum saturates with a microwave power of 0.2 mW at
4 K. At a temperature of 50 K, the EPR lineshape is
unchanged relative to the unsaturated 4 K spectrum of
Fig. 7, and signals are observable up to liquid nitrogen
temperatures. FeEDTA is thus an exception, as all other
compounds that we have studied give EPR signals which
broaden or vanish at such high temperatures. A depopula-
tion experiment of the FEEDTA signal was performed
using metMb as a thermometer. The signal intensity as a
function of temperature and fits assuming a Boltzmann
distribution with the signal from the |2*} ground doublet
are shown in Fig. 9. The fits of the data in Fig. 9 suggest a
larger value, D = —16 to - 20 K, than that deduced from
the susceptibility, but they show that the EPR signals are
from a ground doublet.

Assuming the EPR signals are from the [2*} doublet,
the best simulation of spectra using B, 1 B is cbtained
with D, = —13 K, E, = —1.5 K, and o5 = 0.15 K. This
parameter set corresponds to ~20% of the spins obeying
the inequality A, < A» with X band EPR and thus predicts
the increased signal intensity relative to the spectra of the
hexaquo Fe*?, where only ~5% have A, < hv. Spectral
simulations generated with the assumption of resonance
from the |1*) doublet were unsuccessful. As is evident
from a comparison of Figs. 7, a and b, the same parame-

ters fit the B, | B spectrum rather poorly; not only is the
simulated intensity too large, but the trough of the
simulation occurs at too high a field. The reason for this
behavior is not yet understood, in fact all other spectra
which were simulated well with one B, -orientation, could
be simulated equally well with the other orientation, in
obeyance of Eq. 13. Consequently, an EPR quantitation
of samples having known concentrations gave poor agree-
ment.

Mbossbauer spectra of a frozen aqueous solution of 10
mM FeEDTA show two broad, asymmetrical lines indic-
ative of sample inhomogeneity. A sample with 75%
glycerol, however, gave sharp lines showing two compo-
nents. Component one accounts for 72% of the total iron
in the sample and component two accounts for 28%. The
results of zero field measurements as a function of
temperature are given in Table 2.

Model hemes

Fig. 10 shows polycrystal EPR spectra of the ' — 2 model
heme complex Fe(Il) 2-methylimidazole meso-tetra-
phenylporphyrin (FeTPP) (15) in both cavity modes. The
parallel field spectrum lacks the impurity signal of our
previous work (10). Except for the ferric impurity signal
of g ~ 6, the spectra are virtually identical to the FeSO,
spectra and therefore the FTPP resonance must be from
the]2*) doublet of the quintet. The spectra also vary with
microwave power in the same way as that observed for the
hexaquo Fe*2. The relative signal intensity between the
B, || B and B, L B orientations ar¢ found to obey Eq. 13
within experimental error, after correction for differences
in microwave power and filling factor.

The Fe-CO bond in the low-spin S = 0 model heme
compounds Fe(IT) imidazole protoporphyrin IX CO and
Fe(Il) 2-methylimidazole protoporphyrin IX CO can be
photolytically cleaved (39), resulting in a high-spin § = 2
state. No EPR signals were observed during continuous
illumination, however, presumably because of very rapid
recombination of CO with the iron. We mention this
negative result as a control experiment for the protein
results to follow.

TABLE2 W3ssbauar parameters of 10 mM FeEDTA in
75% glycerol

T AEY 3 re  AgQ b | el
K
42 345 128 029 301 121 043
30 348 128 028 308 122 040
93 345 127 025  3.03 122 050
153 3.37 124 027 286 1L.20 054
193 3.3 121 025 278 115 063

Sec Table 1 for explanation of symbols and units.
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FIGURE10 Polycrystal EPR spectra (_) and simuiations (...) of
Fe(I) 2-methylimidazole meso-tctraphenylporphyrin at 7~ 4 K using
{@) B, | B2nd () B, L B. The signals at 140 mT and 330 mTin B, 1. B
are from half-integer-spin impurities. Simulation parameters; D = —8
K, E = —205K, ag = 0.60 K, g, = (2.00, 2.06, 2.14). Instrumental
parameters: microwave, 9.108 GHz (a) or 9.060 GHz (b) at 0.2 mW
{unsaturated); modulation, 100 kHz at 0.8 mT,: gain, 1.25 x 10°%
dB/dt, 2.5 mT/s (a) or 3.5 mT/s (b); filter, 0.5 5. The intensity of the
B, .1 Bspectrum is 10% smaller than expected from consideration of Eq.
13, but the uncertainty of the filling Factor for a small dispersed, powder
sample is large.

Myogiobin (Mb)

In a previous paper we rcporied the first EPR spectra
observed from quintet states of myoglobin (10). Fig. 11
shows difference spectra between the diamagnetic CO-
adduct of Mb and its photolysis product Mb*(CO) with
B, | B and B, 1 B. The lineshapes are not significantly
affected by microwave powers of up to 2 mW at 2 K. In
* contrast, the lineshape of the photodissociated complex of
Mb*(0,) (10), which differs from that of Mb*(CO), is
significantly altered with microwave power of 0.2 mW at
2 K. Good simulations of the spectra are obtained with the
parameterset Dy = 7K, op = 1.5 K, Eg= 1.3 K, o5 =035
K and are overlaid on the data of Fig. 11. The relative
signal intensity of the B, | B and B, 1 B orientations are
found to obey Eq. 13. The parameter set, which now
invokes a spread in parameters D and E, is compatible
with magnetic susceptibility (40) and far-infrared (22)
results. However, the Mb spectra are similar to those of
the hexaquo Fe*? and FeTPP with the trough in dx”/dB
for Mb occurring 5 mT higher and being approximately a
factor of three weaker than in the FeSO, spectra of Fig. 5.
Thus, reasonably good simulations for Mb can be
obtained also with ap, = 0 and other parameters close to
the set used for FeTPP or the hexaquo Fe*2

The high protein concentration and the formation of
snowlike ice crystals upon freezing result in a relatively

FIGURE 11  Difference (light-dark) spectra (_} and simulations (. . .} of
a frozen solution of photodissociated carbonmonoxymyoglobin,
Mb*(CO), at T = 4 K using (a) B, | B and (§) B, L B. Sample
conditions: 10 mM Mb, 50% glycerol, 50 mM KP;, pH — 7. Simulation
parameters: Dy= T K, 05 = 15 K, Eg = 1.3 K, 05 = 035K, g ~
(2.07, 2,05, 2.00). Instrumental parameters: microwave, 9.093 GHz (a)
or 9.140 GHz (b) at 2 mW (unsaturated); modulation, 100 kHz at 0.8
mT,,; gain, 1.6 x 10° dB/dr, 1.5 mT/s (@) or 2.5 mT/s (b); filter, 15,5
scans in 17 min. There is a subtraction artifact at B = 330 mT in B, L
B.

opaque sample. The addition of glycerol to the sample
results in glass formation, allowing for deeper light pene-
tration and presumably a larger fraction of photodisso-
ciated centers. Equivalent samples of MbCO with and
without 50% glycerol showed no lineshape differences,
but the signal intensity from the 50% glycerol sample was
2.5 times greater under identical illumination and other
conditions. Thus the intensity of the Mb*(CO) signal
with 50% glycerol is approximately equal to that of the
frozen solution of FeSQ,, assuming that alt MbCO mole-
cules remain photodissociated during the measurements.
Myoglobin in 75% glycerol undergocs what appears to be
a glass phasc transition at 180 K (41). However, EPR
spectra of Mb*(CO) with 50% glycerol at 4 K, showed no
difference before and after “annealing” at 200 K for 15
min.

Control EPR experiments were performed on the phos-
phate buffer used in the Mb samples. The EPR samples
were prepared in the same manner as the deoxyMb and
MbCO samples, except with no Mb. No significant EPR
signals were found before or after illumination of the
sample. Also, a frozen solution of aqueous FeSO, satu-
rated with CO showed no EPR spectral differences before
or after illumination.

_We have checked for an EPR signal from the photo-
lyzed complex of MbNO, which one might expect to give
signals similar to Mb*(CO) or Mb*{0,). The MbNO
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FIGURE 12 Frozen solution EPR spectra of cytochrome oxidase from
(a) 0.35 mM yeast, B, | B, (6) 0.23 mM bovine heart, B, | B, and (c)
bovine heart, B, . B, at T = 4 K. Instrumental parameters: microwave,
9.05 GHz (a, b) or 9.10 GHz {c) at 2 mW; modulation, 100 kHz at 1.1
mT,, (a) or 0.8 mT,, (b, c); gain, 3.75 x 10° (a) or 1.25 x 108 (b, ¢);
dB/dt, 0.6 mT/s (a), 3.5 mT/s (b), or 2.5 mT/s {¢); filter, 1 5.

complex has spin S = 4 and gives an EPR signal which
decreases in intensity proportionately to the number of
Mb*(NO) centers created {42). Thus, by monitoring the
intensity of the S = ' EPR signal with B, 1 B during
photolysis, it was clear that a sufficient concentration—
comparable with the concentration of centers created in
Mb*(CO) and Mb*(0,) samples—of Mb*(NO) centers
was created. Surprisingly, no integer-spin signal was
observed.’

Cytochrome c oxidase

Integer-spin EPR signals have been reported from the
Fe,; Cug site of cytochrome ¢ oxidase (CcO) of bovine
heart (2, 7, 8). The signal, usvally referred to as the
“g — 12" resonance, has been reported with B, | B(2),
but not simultaneously with B, + B under identical
conditions. Fig. 12 shows integer-spin spectra of the
Fe,,Cu, site using both field orientation, B, | Band B, 1+
B. Note that the ratio of parallel to perpendicular signal
intensity is significantly smaller in comparison to the

A number of other heme proteins were also checked for non-Kramers
EPR signals at X band. No EPR signals were observed from the
following complexes: single crystals of deoxyMb, photodissociated
bovine hemoglobin CO, reduced and compound II complexes of horse
radish peroxidase (HRP), photodissociated HRP CO, and reduced
catalase. The lack of signals in some cases is presumably explained by
the magnitudes of zero-field parameters which shift the EPR resonance

out of the energy regime of an X band spectrometer, & > hv » 0.3

cm™\.

other integer-spin complexes. In addition, Fig. 12 @ shows
a similar integer-spin signal from CcO of yeast. The
spectrum from yeast appears 10 contain two components
with minima at B = 45 mT and B = 65 mT. The lower
field component is also weakly visible in the bovine heart
sample. The magnitude (zero-to-trough) of the yeast
signal is 20% of the bovine heart signal after scaling for
gain and concentration.

Azide complex of hemerythrin

EPR signals have been reported from the binuclear
ferrous site of the azide complex of hemerythrin (3, 24).
Fig. 13 shows EPR spectra using both field orientations,
B, | B and B, 1 B. At low temperatures, the signal
intensity is inversely proportional to temperature, indicat-
ing a ground state doublet as has been stated previously
(24). The spectra clearly show lineshape changes when
the microwave power is increased as shown in Fig. 14. The
“saturation” at low field is a spectral characteristic of
many, if not all ferrous complexes. The spectra of Fig. 14
and similar spectral changes at 4 K contradict a previous
statement of no saturation at 200 mW and 4.2 K (24).

Extensive attempts at simulation of the spectra assum-
ing a S = 2 spin Hamiltonian have becn unsuccessful. It is
possible to match the field value at the trough of dx”/dB
as by appropriate adjustment of D and E parameters the
resonance can be positioned at any field B < hv/g8,
where 3, = 2kg_a,, but the shape of the simulation
strongly depends on og as well.

a BB
m
o
&
b B 1B
0 I00 B0 300 400
B(mT)

FIGURE 13 Frozen solution EPR spectra of the azide complex of
deoxyhemerythrin from Phascolopsis gouldii at T = 4 K using {(a) B, i
B and (3) B, L B. Fe,N, concentration is ~5 mM. Instrumental
parameters: microwave, 9.059 GHz (a} or 8.993 GHz (&) at 2 uW
(unsaturated); modulation, 100 kHz at 0.8 mT,,; gain, 1.25 x 10%
dB/dt, 2 mT/s; filter, 0.1 s (@) or 0.2 5 (b).

500 Biophysical Journal

Volume 56 September 1989




dy"/dB

5 160 200
B(mT)

FIGURE 14 Power dependence of the EPR signal of the azide complex
of deoxyhemerythrin at T =~ 2 K using B; | B. Instrumental parameters:
microwave, 9.05¢ GHz at 0.002 (1), 0.2 (...), or 20 mW -
modulation, 100 kHz at 0.8 mT,,; gain, 1.6 x 10° (_}; dB/ds, 4 mT/s;
filter, 0.5 5. Other gains adjusted relative to () in proportion with
{microwave power)"/%

DISCUSSION

iron doped zinc fluosilicate

As we have shown earlier (10), Eq. 11 reproduces the
angular dependence of single-crystal EPR spectra of
(Zn/Fe)FS and, with an appropriate choice of P(E), it
reproduces the spectral shape reasonably well. Here,
moreover, we have demonstrated that the parameters of
the simulation can be used to deduce the number of spins
in a sample based on comparison with a known standard
and on Egs. 18 and 20. Specifically, we compared the
numerical integrals of spectra of a metmyoglobin stan-
dard with that of a (Zn/Fe)FS single crystal and found a
number of spins within 15% of the independently mea-
sured value. The earlicr statement of Hagen (2) that
integer-spin EPR spectra do not lend themselves to spin
quantitation using numerical integration is therefore
invalid. The quantitation clearly depends on the accuracy
of the simulation, in particular on the assumed distribu-
tion of A-values, which determines the fraction of mole-
cules observable at a given frequency through the in-
equality v > A,. (Zn/Fe)FS is a particularly favorable
case since EPR arises from the {1*) doublet, thus the
distribution of A, = 6E is given entirely by P(E}. In
addition, the fraction of molecules observable at X band is
60%, a value that is large compared to all other cases
considered here. Ideally, integer-spin EPR spectra should
be taken at sufficiently high frequency so that the entire
population of S = 2 molecules is observable. Experiments

on (Zn/Fe)FS at 35 GHz satisfy this condition, but the
quality of the preliminary spectra in Fig. 4 was inade-
quate for accurate quantitation. The simulations appear
to require a smaller spread, og, in P(E) than deduced
from X band data, and if better measurements confirm
this observation, they could either imply a non-Gaussian
P(E) or an additional line broadening mechanism.

Hexaquo Fe*?

Missbauer findings are compatible with the presence of
hexaquo complexes of the ferrous ion in quenched aque-
ous solutions (43). The water molecules are weak-field
ligands and form a rough octahedron about the iron ion
resulting in a high-spin iron quintet. We have demon-
strated earlier (10) that the EPR signals are due to
resonance of a ground [2%) doublet. The best EPR
simulations use D = —8 K, E = —2.05 K and indicate a
large width in the distribution of A,-values, which hardly
affects the interpretation of the magnetization data,
however. The parameters deduced from the latter,
D = +13 K, E/D ~ 0.3 (10) do not match the EPR data
perfectly, but it is difficult to deduce the correct parame-
ters from EPR data that account for only ~5% of the
spins. In addition, the distribution P(E) may be skewed,
or otherwise more complicated thus invalidating the
assumption of 2 Gaussian distribution. The position of the
resonance is dependent on D through the second order
spin-orbit coupling corrections to the g values, Eq. 2 of
reference 10. However, the dependence of the zero-field
splitting on D presents an added complication and, in
general, an independent determination of D is difficult
from simulations alone.

The problem of deducing correct D and E values may
be overshadowed by a more important question. Are large
negative D-values physically meaningful? According to
standard models (44), negative D-values imply low-lying,
excited orbital states which may invalidate the spin
Hamiltonian of Eq. 3. Clear evidence of a temperature-
dependent quadrupole splitting in Mbssbauer spectra
exists in many ferrous complexes, suggesting an excited
orbital level at ~300 K. For hexaquo Fe*? the tempera-
ture dependence of the quadrupole splitting is relatively
weak, however, and Eq. 3 should be valid over the limited
temperature range of the EPR studies.

It is important to note that the best fit to the magnetic
susceptibility data suggests A, ~ 3 cm™', a value thatis a
factor of 10 larger than the energy of an X band spectrom-
eter, yet EPR spectra are observable. Hexaquo Fe*?is not
an isolated case: FeEDTA and preliminary results from
several other complexes have magnetization or

- Méssbauer data which suggest no X band EPR resonance,

yet integer-spin signals have been observed. Thus,
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Mdssbauer or magnetization data should not deter one
from trying EPR experiments.

The use of hexaquo Fe** as a quantitation standard is
not recommended for several reasons. (@) The fraction of
total spins observed is smail and difficult to determine
accurately. At sufficiently high microwave frequency, on
the other hand, all spins satisfy the condition A, < kv and
are thus observable. (b) Mdssbauer experiments have
shown that the ferrous ions are trapped in an unstable ice
lattice when quenched in liquid nitrogen (43). If after
quenching, the sample is warmed to 190 K, the ice lattice
undergoes a nonreversible transformation (anneal) to a
stable lattice. We have observed temperature hysteresis
effects with EPR as well. (¢) Subtle variations in intensity
and lineshape, due to solvent and counter ion effects,
suggest problems with reproducibility.

tron (Il)
ethylenediaminetetraacetate
(FeEDTA)

Sample heterogeneity precludes a definitive interpreta-
tion of the EPR data, but Fe*? EDTA is of interest
because of the persistence of its EPR signal upto 80 K, a
feature not seen in any of the other integer-spin systems.
According to the Mdssbauer analysis summarized in
Table 2, the FeEDTA sample contains two distinct Fet?
species with different quadrupole splittings and possibly
different zero-field splittings. It is not clear if the EPR
signal arises from both species or from one only. The
magnetization data of Fig. 8 yield an average value of the
zero-field parameters, D = +13 K, E/D « ;. The EPR
simulations of Fig. 7 are obtained with D ~ —13 K,
E - —1.5K, 0¢ = 0.15 K, but they do not match the data
satisfactorily. Moreover, the temperature dependence of
the EPR signal, Fig. 9, suggests a more negative value,
D = 16 K. In summary, cur model does not allow us to
find a definitive parameter set, most likely because the
sample contains two different Fe*? species.

The FeEDTA EPR signal is observable at a signifi-
cantly higher temperature than that of all other com-
plexes in this study. At low temperature, 7 = 4 K, the
signal saturates with relatively low microwave power.
These observations suggest that the FeEDTA complex
has a relatively slow relaxation rate. As the microwave
power is increased, the behavior of the spectral lineshape
is markedly field dependent and analogous to that shown
in Fig. 14. The low-field edge near B -~ { saturates most
easily. At higher microwave frequencies the absorption
shifts away from B = 0 and low field saturation may not
be as much a concern; this remains to be seen. Hagen (2)
has suggested that lineshape changes like that of Fig. 14
are due to burn-out of spin-packets having low resonance

field. However, the canonical relaxation mechanism,
ligand-field modulation (20), has not yet been shown to
predict easy saturation at low fields.

Model hemes

The EPR signal of the model heme complex Fe(I)
2-methylimidazole mesotetraphenylporphyrin (FeTPP)
is remarkably similar to the signals of hexaquo Fe*?, not
only in shape but also in microwave power and tempera-
ture dependence. The simulations predict an EPR observ-
able fraction of only ~5%, so it remains to be seen if
analysis of data from such a small fraction is compatible
with data taken at higher microwave frequency. High-
field Mossbauer experiments on the same complex have
been interpreted in terms of temperature-dependent
quadrupole splitting and zero-field parameters (45), sug-
gesting that the spin Hamiltonian, Eq. 3, is invalid.

No EPR signals were observed from the FeTPP(CO)
model complexes under continuous illumination. Two
possible explanations for the lack of a signal are: (a) the
recombination of CO to iron is fast (70% of the photo-
lyzed molecules rebind in 107*s [39]) and the equilibrium
concentration of § = 2 centers is too small to be detected;
(b) the zero-field splitting of the photodissociated com-
pound does not satisfy the inequality, A, > A, and thus no
EPR signal is detectable. Although no EPR signals were
found, this model complex serves as a control for the CO
myoglobin experiments in the next section.

Myoglobin (Mb)

The myoglobin signals are similar to those of the hexaquo
Fe*? and the FeTPP model, but the trough of dx"/dB is
significantly different. Moreover, the temperature depen-
dence of the Mb spectra is that of an excited doublet (10),
but if the spin Hamiltonian, Eq. 3, is valid, thermal
population alone cannot explain the temperature depen-
dence of the EPR signal intensity. Indeed, with the
parameters used to simulate the signal, it is surprising
that any signal is observed at low temperature as the
population of an excited doublet is quite small at T— 4 K.
Most likely Eq. 3 is inadequate for Mb, a conclusion that
follows from other lines of evidence to be summarized
below. In view of this conclusion, we do not see a method
of spin quantitation for Mb.

EPR signals from Hb have been observed at microwave
frequencies up to 300 GHz (46). The temperature depen-
dence of the Hb signal is similar to our findings for Mb,
but only three temperature points are available from the
Hb experiments. As mentioned in Results, we observed no
integer-spin EPR signals from the photodissociated

"Hb*(CO) complex. The experiments were carried out
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under conditions identical to the Mb*(CO) measure-
ments.

For the EPR simulation of Mb, the center of the
distribution in zero-field parameters was chosen to be
consistent with the magnetic susceptibility data (40) with
the width op adjusted to allow for consistency with
far-infrared data (22). Interestingly, the ratio op/D = 0.2
for ferrous Mb is found to be approximately equal to that
of ferric Mb recently noted by Levin and Brill (36),
suggesting that comparable, large heterogencity exists in
both oxidation states.

The validity of the spin Hamiltonian, Eq. 3, for Mb and
Hb has been questioned (22, 28, 46, 47, 48) because of
passible nearby states which originate outside of the D
term. A number of theoretical models have been proposed
to explain the magnetic data of Mb and Hb. None of the
models to date consistently explains all of the experimen-
tal data. The more important recent experimental find-
ings are:

(a) According to magnetic susceptibility measure-
ments on Mb (49), Mb*(CO) (40), and Hb (50, 51), the
magnetic moment is close to the free spin value, pr =
49y, for T > 20 K. Consequently, either the orbital
angular momentum is quenched, (L} = 0, or else the
wavefunction contains admixtures of states with § < 2.

(b) Massbauer measurements over the temperature
range 10-240 K (45, 48, 52) show a temperature-depen-
dent quadrupole splitting, A Eq, suggesting the population
of a nearby excited orbital state.

(¢) The principal component of the electric field gra-
dient tensor is negative, ¥zz < 0, and none of the tensor’s
principal axes are aligned near the heme normal
(45, 47, 53).

(d) Far-infrared magnetic resonance measurements
find a magnetic doublet split by ~6 K. No other transi-
tions are observed within 20 K, and the onc doublet
accounts for the low-temperature DC magnetic suscepti-
bility (22). '

(e) High-spin S = 2 EPR signals are observed in the
temperature range 2-30 K and frequency range 9-300
GHz (10, 46) with a temperature dependence that is
inconsistent with the spin Hamiltonian of a quintet.

Findings (a) and (b) seem to be contradictory as the
nearby orbital states necessary for a temperature-depen-
dent AE, will admix through the spin-orbit interaction
and tend to unquench {L). The magnetic susceptibility
data of Nakano et al. (49) and Roder et al. (40) can be
fitted well with a S = 2 spin Hamiltonian and D~ 7K,
but such a fit contradicts findings (d) and (¢). Several
models (48, 52) that proposed more complicated elec-
tronic energy level schemes contain assumptions at vari-
ance with findings (a) and (c). Most recently Kent et al.
(47) considered several electronic schemes for Mb based

on the °D term of Fe*. They found that none of the
schemes was compatible with all the experimental facts
and concluded that the *D term alone is inadequate and
that other terms must be admixed. In view of findings (d)
and {e), it appears that clectronic models cannot ignore
sample heterogeneity of the type we attempt to describe
by distributions of the zero-ficld parameters.

Cytochrome c oxidase

The “g = 12” EPR signal in oxidized CcO has long been
thought to arise from an integer-spin system (54), and
several attempts to analyze this signal have appeared in
the literature (2, 7, 25). Here we add a few new observa-
tions, we note that our model fails to simulate the signal
quantitatively, and we specuiate about possible reasons
for this failure.

CcO is the terminal oxidase of the respiratory chain in
mitochondria; it is known to contain two hemes, heme a
and heme a,, and two copper atoms, Cu, and Cug, in an
active site whose detailed structure has not been resolved
yet. Most efforts to arrive at reproducible and homoge-
neous preparations of CcO have been made with beef
heart (55, 56) but yeast CcO has also been characterized
in detail (9,17). The “g = 12" state of the oxidized
enzyme has low activity (55) and is possibly an artifact
(57); it is of intercst nevertheless, because it contains a
spin-coupled pair of high-spin heme a3, Sg. = 5/2, and
Cug*?, with an effective spin of § ~ 2. The spin coupling
implies that the two metals are close together, presumably
bridged by a chloride ion (57), and one can speculate that
the active form of the enzyme has a closely related
structure.

As is evident from Fig. 12 a, CcO from yeast shows two
distinct “g = 12” type EPR signals, and comparison with
the signal of CcO from beef heart in Fig. 12 b suggests
that the latter also consists of two superimposed signals,
albeit of different intensities. Assuming that the spins of
heme a, and of Cug are strongly coupled to an effective
spin of § = 2, the spin Hamiltonian, Eq. 3, should apply to
the coupled system. As a consequence, the “g=12"
signal should be described by our lineshape model that
derives from Eq. 3. So far all attempts to simulate the
‘g = 127 spectra have failed, however assuming either
k = 1 or k = 2 in Eq. 5. The problem conceivably arises
from the fact that the spectra are superpositions of two
signals that cannot be separated yet. We have also
attempted to simulate data from Hagen’s work (2).
Hagen’s spectrum using B, || B shows one component only
and simulations of this spectrum do give a closer,
aithough not exact, fit with our model. However, no

. spectra using B, L B were presented to allow for a check

of Eq. 13.
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Another explanation is suggested by the observation
that the “g = 12” signal resembles the spectrum of
Mb*(0,), as illustrated in Fig. 15, a spectrum that our
lineshape model does not reproduce cither. In the case of
Mb*(0,} it is pretty obvious that the spin Hamiltonian,
Eq. 3, is not adequate. According to the EPR spectra the
clectronic state of the heme iron in Mb*(CO) is indistin-
guishable from that in Mb, at least on the time scale
(10’ 5) of the experiment, and one would expect the same
state of the iron in Mb*(0,) as well. The pronounced
difference in the EPR spectra of Mb*(0Q,) and
Mb*(CO), respectively, is most likely due to the presence
of the spin § = 1 of the O,, which interacts magnetically
with the spin S = 2 of the iron. The Hamiltonian of the
Mb*(0Q;) system is therefore quite different from Eq. 3,
and it is no wonder that the model derived from the latter
does not describe the EPR of Mb*(0,). Extending the
argument to CcQ, we propose that CcQ does not satisfy
the assumptions of our model. The Fe**-Cu*? system may
either have a larger number of degrees of freedom than
Eq. 3, e.g., if the exchange interaction between the two
spins is not very strong or terms in S* are not negligible
(25, 58), or else the assumption is incorrect that the
transition matrix element is given entirely by { k*[S,Jk*),
e.g., in Eq. 7. A hint of the last possibility comes from our
attempts to simulate the spectra taken with B, || B and
B, L B in Figs. 12, b and ¢, as it proved impossible to
reproduce the intensity ratios assuming the validity of Eq.
13.

In summary, a quantitative interpretation of the
“g = 12" signal of CcO is still lacking. The simple model
of a spin quintet with transitions within the |k* ) doublets
is inadequate, and a more systematic study appears
necessary using EPR at different frequencies in combina-
tion with magnetization and Méssbauner measurements.

dy"/dB

200
B{mT)

FIGURE 15 Frozen sclution EPR spectra of cytochrome oxidase from
bovine heart () and photodissociated oxymyoglobin, Mb*{0,) (. . .) at
T ~ 4 K using B, | B. The oxidase spectrum is reproduced from
Fig. 12 b and Mb*(0,) spectrum is reproduced from Fig. 6 a of refer-
ence 10. Comparison of signals using B, L B cannot yet be made, as such
a signal has not been observed from Mb*(0,} due to signals from ferric
impurities which mask the region of interest.

Azide complex of hemerythrin

Another integer-spin EPR signal has been reported by
Reem and Solomon (3, 24) in deoxyhemerythrin azide.
Hemerythrin is the oxygen carrier protein of marine
worms and contains two high-spin iron atoms in a binu-
clear site with three bridging ligands, a u-hydroxo group
(3), a glutamate and an aspartate. In deoxyhemerythrin
both irons are ferrous; one is five-coordinate and can bind
O, or anions like azide. Fig. 13 shows the EPR signals of
hemerythrin azide for the two field orientations B, | B
and B, L B; it has all the characteristic features of
integer-spin EPR, i.e., dx”/dB is negative throughout and
reaches its minimum at rather low fields, and the signal is
considerably stronger for B, || B than B, 1 B. The last
feature suggests that the EPR transitions arise from
the matrix element {k*|S,k*) rather than from
{k*|S,|k*). Fig. 14 illustrates the peculiar saturation
behavior of the EPR signal of hemerythrin azide, which is
typical of several integer-spin systems. The low-field part
of dx”/dB saturates more readily than the rest of the
spectrum for reasons that are presently not understood.
Not surprisingly, our lineshape model for 2 § = 2
Hamiltonian, Eq. 3, is unable to reproduce the observed
spectra. Even if the exchange interaction, JS, . S,
between two ferrous ions should be negligible, the
dipole—dipole interaction may be strong compared with
the Zeeman interaction at the fields of interest, thus a
more complicated Hamiltonian than Eq. 3 must be used
to describe the system.

Reem and Solomon suggest a ferromagnetic coupling
between the two Fet? ions (3, 24), and they assign the
EPR signal to transitions in a spin-admixed ground
doublet |+4). Their interpretation of the EPR data is
weak, however, on several accounts. (@) It is unjustified to
base a spin assignment of S = 4 on the effective g-value,
Zeq = 16, of the minimum in dyx"/dB as several other
integer-spin complexes with § # 4 show EPR signals
peaking near g.g = 16, for instance FeEEDTA, ferredoxin
IT (5,6), and aconitase (Hendrich, M., unpublished
result). Before an assignment can be considered definitive
it should at least lead to a quantitative simulation of the
EPR spectra. (b) The increased intensity of the B, | B
spectrum relative to the B, 1 B spectrum, showh in Fig.
13, is a characteristic feature of EPR transitions
mediated by the matrix elements {k*|{S,|k* } rather than
{k*|S.|k7). The statement that only m, = +1 transi-
tions are allowed in the normal microwave configuration,
i.e., for B, 1. B (24) is inappropriate in the present context
since the dominant interaction for integer-spin systems of
low symmetry is the zero-field splitting. The quantization
axis z is therefore defined by the first term of Eq. 3, and
the periodic perturbation, 8B, - g- 8, has finite $, matrix
elements for all molecuies whose z-axis is not perpendicu-
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lar to B. We conclude that the origin of the EPR signal in
hemerythrin azide is not fully understood and that more
work is needed to arrive at a quantitative interpretation.

CONCLUSION

We have put forth a quantitative basis for the analysis of
integer-spin EPR signals from metal centers with large
zero-field splittings. The measurements and analyses on a
variety of iron(Il) compounds have lead to new insights
on protein states that are generally thought not to be
accessible with EPR.

We find sizable spreads in zero-field splitting parame-
ters, and such spreads cannot be overlooked if the inter-
pretation of magnetic data from several techniques is
combined for protein characterization. This work clearly
demonstrates the need for data at higher microwave
frequencics. Higher frequency data will most certainly
allow a better analysis of spectra, increase quantitation
accuracy, reduce computer simulation time, and improve
the chances of finding new signals from metal centers
with even larger zero-ficld splittings.
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