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Introduction

This chapter acts as a signpost for the rest of the manual. It discusses what to know and where to go
when learning to operate SIMION. It is assumed that you have run the demos in Appendix C as well
as read Chapter 2 and successfully created and flown ions in your first potential array using the
step-by-step example at the end of the chapter. If not, stop and do these things before proceeding with
this chapter.

A Brief Contextual Overview of SIMION

In Chapter 2 you were introduced to SIMION by an example of use. This brief overview is intended to
create a vision of the structure of the constructs and features that combine to form SIMION. Hopefully,
this overview will help you keep your bearings as you immerse yourself in the details of later chapters.
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Figure 3-1 SIMION’s 8 km’ cubic universe

SIMION’s Simulation Universe - a 8 km’ Volume

SIMION’s simulation universe is an imaginary 3D +/- 1 km cubic volume (8 km’ in volume) with
its origin (x=0, y=0, z=0) located in the center of the cube (Figure 3-1 above). The actual
simulations are conducted within an ion optics workbench volume that resides within the
simulation universe.

SIMION’s lon Optics Workbench

SIMION’s ion optics workbench (or just workbench) is an imaginary 3D rectangular volume of
space within the simulation universe in which the actual simulations are conducted. All features
(e.g- array instances) must be contained within the workbench. Moreover, ions must be created
within the workbench to be flown, and any ion’s trajectory that crosses a workbench boundary is
terminated. Thus the workbench defines the limiting volume for a simulation. You have the
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option of positioning and sizing the workbench volume anywhere within SIMION’s simulation
universe. This also implies that the maximum size allowed for the workbench volume is
SIMION?’s simulation universe (8 km’). Workbench positions are always in mm relative to the
origin of the simulation universe.

SIMION can save a workbench definition including all its array instance definitions (discussed
below) and the potentials of referenced potential arrays (.PA and .PAQ) in an .IOB file

(Chapter 7). When an .IOB file is loaded by the View function, the workbench volume is
recreated, all array instances are restored, all referenced potential arrays are loaded, and SIMION
will aptionally restore the potentials of all referenced .PA and .PAO files. SIMION can also
automatically reload ion definition files (FLY or .ION), data recording files ((REC), and kept ion
trajectories that the user has elected to designate as auto-loading when the JOB file was last saved.

It is recommended that you make extensive use of .IOB files. It is the most effective way to
define, save, and restore a simulation project.
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Figure 3-2 Projection of three array instances of the same
potential array into the workbench volume

The Projection of Array Instances into the Workbench

3-2

An array instance is used to project (locates, scales, and orients) a single 3D image of a potential
array into the workbench taking into account the array’s symmetry and mirroring attributes. For
example, a 2D cylindrical array is projected as a cylindrical 3D volume (surface of revolution).
The array instance construct provides the coupling between potential arrays in RAM and the virtual
reality of the workbench volume where ions are actually flown.

SIMION allows up to 200 array instances of potential arrays to be projected into a workbench
volume. Figure 3-2 (above) shows three array instances of the same potential array (an einzel
lens). This demonstrates that array instances can share the same potential array, because each
array instance merely projects a 3D image of a potential array. As this example demonstrates, each
array instance (or image) can be positioned, scaled and oriented independently. However, since all
three array instances project images of the same potential array the electrode potentials of each
array instance are identical, and the field gradients only differ by the relative scaling factors
between the array instance definitions. It is important to remember that electrostatic and magnetic
fields can only exist within the projected array instance images. This means that the workbench
regions between array instances are normally assumed to be field free (an exception for
electrostatic field interpolations is discussed in Chapter 7).
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The array instance construct is very powerful. It allows you to superimpose array instances of
electrostatic and magnetic arrays to create volumes containing both electrostatic and magnetic
fields. Moreover, array instances can be projected inside array instances to allow more detailed
fields to be defined in specific regions. Each array instance has no knowledge of any other array
instance (all are blind). This means that the proximity of other array instances have absolutely no
impact on the fields within an array instance. It is up to you to set the boundary conditions
properly so that the fields make sense (Chapters 5, 7, and 9). There is a way to copy the 3D
images of electrodes or poles from one array instance into the equivalent locations in another array
nstance (Chapters 7 and 9). This allows you to project the impact of one array instance into
another because you can Refine the resulting array.

Array instances can automatically be created by SIMION. In the Chapter 2 SIMION
demonstration, an array instance was automatically created when the View function was entered
with the test.pa0 potential array selected. SIMION set the scaling of the array image projected by
the array instance definition to 1 mm/array grid unit and located the origin of the array at the origin
of the simulation universe and oriented the array instance so that the x, y, and z axis of the array
were aligned with the respective x, y, and z axis of the simulation universe. The workbench
volume was then minimized so that this array instance of the test.pa0 array filled the workbench
volume.

Figure 3-3 A cutaway clip of an outer 3D zoom volume to
show an inner 3D zoom volume and its ion trajectories

Visualizing the Workbench with the View Function

SIMION’s View function is used to create and visualize the workbench along with its array
instances and ion trajectories. The View function is where you will spend most of your time. It
has the most capability and features. The more you know about these features, the more likely you
are to find using SIMION a rewarding experience (Chapter 7).

The Notion of 3D Zoom Volumes

Selective visualization is the name of the game, and SIMION bases all its visualizations on the
construct of 3D zoom volumes and their surfaces. In much the same way that 2D zoom areas
select and magnify sub-areas within a larger 2D view, 3D zoom volumes are used to select and
magnify 3D volumes within the workbench volume. SIMION supports the concept of
multiple nested 2D and 3D zooms. This means that once zoomed into a particular 3D zoom
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volume, an inner volume can then be marked and zoomed into. The current series of zooms
are also remembered (2D and 3D) to allow you the freedom of backing out a zoom level or
two and then zooming back in at will.

Figure 3-3 (above) illustrates the notion of multiple nested 3D zoom volumes. It also
illustrates the use of a View option to automatically cutaway portions of the current 3D zoom
volume in order to see the next inner 3D zoom volume in the display chain. The point here is
that View has visualization tools that allow you to quickly and easily zoom into what you want
to see and many options to help you see it your way (e.g. selective array instance drawing,
cutaway clipping, edge only drawing, adjustable drawing quality, potential energy views, and
more). SIMION supports advanced features like 3D pointing and cutaway clipping by using
2D mouse motions (via 3D isometric pointing).

3D Front Surfaces Used for 2D Views

2D views are generally (though not always) based on the visible front surface of the current
3D zoom volume. Each 3D zoom volume has six boundary surfaces that can each selectively
become the visible front surface depending on the 2D direction the 3D volume is viewed from
(via the Orientation Sphere object in View). Features like potential energy surfaces and
contouring generally use the fields on the current 3D zoom volume’s front surface to generate
their outputs. Details about all this and more are to be found in Chapter 7.

Contouring

SIMION supports the drawing of contours and 3D contouring surfaces for both potentials and
gradients (Chapter 7). Many people find the automatic contouring features helpful, because
they can easily create topographic maps of potentials or gradients. Contours can be very
helpful in PE Views as well.

3D contouring surfaces give you the ability to see the direction of forces in 3-dimensional
electrostatic arrays (a 4D display problem). It takes a bit of insight to interpret these surfaces.
However, they can be visually quite impressive.

Defining the lons to Fly

3-4

SIMION defines each ion by the parameters that specify its initial condition: Mass, charge,
starting position, kinetic energy, initial direction of motion, time of birth (for delayed starts), color,
and etc. The ion’s starting position and direction of motion can be defined either in the units (mm)
and orientation of the current workbench volume or in terms of the units (grid units) and
orientation of a selected array instance to tailor ion definitions to the problem at hand (Chapter 8).

Defining lons in Groups of Similar lons

Ions can either be defined in groups or individually (Chapter 8). Each method has its uses.
Ions are normally defined by groups when they are used to create ion beams. Then the ions
only differ by one or two parameters (e.g. y starting position). If ions can be defined by
incrementing a starting parameter by some factor, the ions should be defined by group
definition methods. Jons defined this way can be saved in .FLY files (used extensively in the
demos). You should use this ion definition method whenever possible.

Defining lons Individually

In some cases each ion is totally unrelated to any other ion. These ions are best defined by
individual definition methods (via lon by lon Definitions). SIMION saves these individual ion
definitions in .JION files (ASCII file format). The ASCII file format also allows you to create
your own ion definitions outside SIMION (via editor or other program) and use them within
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SIMION (Appendix D - for file format). This is the most flexible (non~-dynamic) ion
definition method.

Defining lons Dynamically

Moreover, you also have the option of defining ions dynamically via the user program feature
discussed in Appendix I. This advanced and very powerful approach can be used to create
random collections of ions that satisfy user defined probability distributions (e.g. ion starting
positions, energies, and/or angles of emission).

Flying lons

Once the ions are defined, they can be flown in many ways (Chapter 8). They can be flown:
separately or together, as rays or dots, with or without charge repulsion, at various computational
qualities, and even kept re-flying in a movie style format.

An lon’s Perception of the Workbench

Each ion flying through the workbench volume continually looks about to see where it is. The
ion compares its location in workbench coordinates (mm) with the locations of all array
instances to determine which electrostatic and/or magnetic array instance volumes, if any, it is
currently within.

If the ion determines that is currently within more than one electrostatic array instance or
within more than one magnetic array instance it always resolves the conflict by selecting to
use the fields of the electrostatic and/or magnetic array instance(s) with the highest priority
(e.g. highest array instance list number). The ordering of array instances allows overlapping
array instances of the same type (e.g. electrostatic) to be selectively visible to the ions in the
desired order (Chapter 7).

Moreover, even when an ion is flying between array instances it looks forward and backward
along its trajectory path line to see if the line intercepts both a leaving and entering
electrostatic array instance. If it does, the intercept potentials are calculated and the
corresponding linear gradient is applied along the ion’s current trajectory line (Chapter 7).

The Interactive Nature of lon Flying

SIMION allows you to change most anything while the ions are flying (Chapters 7, 8, and 9).
This makes the program highly interactive. If you would like to change something while the
ions are flying, try changing it (a view, an array instance, or whatever). Chances are that
SIMION will cooperate.

Data Recording

SIMION supports an extensive data recording capability for ion flying (Chapter 8). You have
the option of selecting which parameters are included in each data record, what event(s)
trigger a data record (e.g. position, velocity reversals, ion splats, and etc.), and the format used
for the data record. You also can control the output of header records.

Data records can be displayed on your screen and/or saved to an ASCII data file. This allows
you to export simulation data for analysis and process by other programs (e.g. a spreadsheet).

User Programs ~ The Sky is the Limit

The most powerful ion flying feature of SIMION is user programs (Chapter 9 and
Appendix I). User programming allows you to write your own routines and have SIMION
automatically compile and use these routines while flying ions.
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User programs can randomize your ion definitions, simulate collisional or viscous damping,
change any adjustable voltage as the ion flies, change an ion’s definitions while in flight (e.g.
color), update potential energy surfaces, selectively kill ions, record user defined data records,
and control the re-flying of ions. This is but a glimpse of the enormous power you have
available with user programming.

The better you know how to use SIMION, the more potential user programs will have for you.
If you want to push it to the limits with user programming, learn all the tricks.

Potential Arrays and How to Create, Refine, and Use Them

All the constructs and capabilities discussed above are designed to effectively exploit the potential
array. Electrostatic and magnetic potential arrays serve as the building blocks for SIMION’s
electrostatic and magnetic field simulations. Potential arrays define 2D areas and 3D volumes in terms
of groups of equally spaced points (square or cubic meshes). Electrode/pole geometry is defined by
designating selected groups of points as electrodes/poles of assigned potentials (setting the boundary
conditions). The key to SIMION is knowing how to define potential arrays and their associated
electrode/pole geometry to provide accurate ion trajectory simulations (Chapters 4, 5, 6, and 7).

Array Creation

Arrays can be created for an Empty PA region with either the New (Chapter 4) or Modify
(Chapter 5) functions. Use the approach that is most convenient for you. Be sure to allocate
enough memory for any planned array size increases (discussed in the housekeeping section
below). Otherwise, you may be forced save the arrays, erase the entire PA memory, and reload the
arrays into larger memory regions (Chapter 4).

Defining Electrode/Pole Geometry

Electrode and pole geometry can be defined by using either the Modify function (Chapter 5),
geometry files (Appendix J), or by your own programs using SIMION’s potential array file format
(Appendix D). 1t is suggested that you take the time to really learn how to use Medify effectively.
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Figure 3-4 Defining electrode geometry via the Modify
function
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The Modify Function (Chapter 5)

SIMION’s Moedify function provides a very direct way to define array geometry via a simple
point and click drawing interface (Figure 3-4). Features are provided to support quick
creation of electrode shapes from rectangles, circles (or ellipses), multi-line boundaries,
parabolas, and hyperbolas. Editing functions like selective marking, finding, moving, copying,
and mirroring help speed the geometry definition process.

The Modify function is most appropriate for the quick definition of 2 dimensional potential
arrays. Moreover, it has tools to support the definition of relatively simple 3 dimensional
potential array geometry too.

Geometry Files (Appendix J)

Geometry files provide a general method for defining complex electrode/pole geometry
(Chapter 9 and Appendix J). This is an advanced SIMION feature. You should learn to use
the Modify function well before attempting to use geometry files.

Geometry files contain geometry language instructions. SIMION compiles these instructions
and inserts the geometry defined into the target potential array (either a new array or an
existing array in Modify). You have the option of positioning, scaling, and orienting this
geometry anywhere within (or around) the potential array.

The greatest value of geometry files is the ability to define complex 3D array geometry.
Geometry files can be easily scaled so that a geometry file can be made to work with any size
array. This means you can get more detailed electrode/pole surface definitions by inserting
geometry file definitions into a larger array (handy).

It is important to remember that a small mistake with a geometry file can be quickly corrected
and the geometry reconstructed automatically by SIMION. However, with Modify, a small
mistake can sometimes take a significant amount of time to correct. If the geometry is
complex (2D or 3D), geometry files are generally the best and most time efficient approach.

External Potential Array File Creation

Appendix D contains the format used for SIMION’s potential arrays. In some cases it may be
to your advantage to write a program (or a subroutine) that directly creates potential array
files. Perhaps you know the field explicitly, and merely need to define it in a way that
SIMION can use. External array creation may be the best approach.

Defining Fields with User Programs (Appendix [)

However, if the field can be defined by one or more analytical functions you may want to take
advantage of the user programming features (Appendix I) to directly (and precisely) define
these fields with the analytical functions with the aid of a dummy potential array.

The Two Types of Potential Arrays

There are two basic classes of potential arrays the Basic potential array and the Fast Adjust
Definition array. Each has its value depending on the application. It is important that you
recognize when and how to use these array types (Chapters 2 and 6).

The Basic Potential Array (.PA)

In the Basic potential array the actual electrode/pole potentials are formally defined (e.g. fixed
valued) in Modify or by geometry files. The only way its potentials can be changed quickly is
via proportional re-scaling of all potentials via Fast Adjust (Chapter 6). If you want to only

change the potential of a selected electrode/pole you must change the potentials of all of the
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points that define the geometry of the electrode/pole with either Modify (Chapter 5) or by
changing a geometry file (Appendix J), and then Refine the array (Chapter 6).

This Basic potential array is designated as such to SIMION by saving it with a .PA extension.
The Basic potential arrays (.PA) are most useful for magnetic pole definitions with non-
uniform pole potentials or electrostatic elements like simple single-stage reflectrons. Here
proportional scaling can be quite useful. Another good use for basic potential arrays (.PA)
would be for simple solid electrode beam stops.

The Fast Adjust Definition Array (.PA#)

In Fast Adjust Definition arrays, the geometry of up to 30 electrodes/poles with individually
adjustable potentials can be defined. In this case the points defining the geometry of a
particular adjustable electrode/pole are all of a designated potential (electrode one points = 1.0
volt). Thus the integer potential values of I fo 30 are reserved for designating adjustable
electrodes/poles. Electrode/pole points that do not have these reserved potentials are treated as
proportionally adjustable potentials as in the .PA array above (Chapter 6).

Fast Adjust Definition arrays are designated as such to SIMION by saving them with a .PA#
extension. When SIMION Refines a Fast Adjust Definition array (.PA#), it automatically
creates and refines separate solution arrays for each fast adjustable electrode/pole as well as
creating and refining a single separate array for the proportionally adjustable potential points
too.

You should normally consider using .PA# arrays for your geometry definitions, because they
offer the most flexibility and power. They even allow you to adjust electrode potentials
dynamically via the user program function as the ions fly (Appendix I).

Refining Potential Arrays

Once the electrode/pole geometry has been defined for a potential array the next task is solving for
the potentials of the points that are not electrodes or poles. In SIMION this process is called
refining (accomplished by various finite difference methods). Once an array has been refined
(solved) it can then be fast adjusted to the desired electrode potentials to obtain the potentials for
the non-electrodes/non-pole points.

Chapter 6 contains an extensive discussion of the separate refining processes applied to Basic
potential arrays (.PA) and Fast Adjust Definition arrays (.PA#) as well as the associated fast
scaling or fast adjust options. If you change the geometry or the defined potentials of
electrode/pole points in an array it must be refined again to obtain the correct field values for the
points that are not electrodes or poles.

Housekeeping Issues

The following material covers general housekeeping issues you should
be aware of to make effective use of SIMION. Please take the time to
read and understand the following material before proceeding.

Always Use Project Directories

3-8

SIMION assumes that all your project files are in the same directory. Further, it requires that the
project directory be the currently selected directory. This was done to enforce one directory for
each project. The example in Chapter 2 shows how to create and use a project directory. If you try
to cheat (use files from other directories instead of copying them to the active project directory),
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SIMION will probably complain about not being able to save or load this or that (you will get
caught).

SIMION Uses RAM For Almost Everything

The working copies of potential arrays, ion definitions, and almost everything else is kept in RAM.
This approach provides the maximum speed if you have enough RAM. If not, the program will
use virtual memory (your disk drive — much slower). If you get an out of memory error, read the
material in Appendix B on how to increase your virtual memory allocation (This is automatically
done in 95, but must be explicitly done in NT). There is no substitute for RAM if you want speed.

Memory Allocation and Heap Fragmentation

SIMION grabs all the memory it uses from heap memory (@ large common block of memory).
The trick is to avoid heap fragmentation. This occurs when chunks of memory are allocated
helter-skelter all over the heap to the point that no large contiguous chunks of memory (e.g.
Jor potential arrays) can be found anywhere. This is why SIMION allocates particular
memory regions for potential arrays once (Chapter 4). These memory regions cannot be re-
sized after they are created to help prevent heap fragmentation problems.

The Remove All PAs From RAM button (Chapters 2 and 4) is SIMION’s method of de-
fragmenting the heap. If things get too messy, save the potential arrays, click the Remove All
PAs From RAM button, and reload the arrays into the desired size of memory regions.
Chapter 4 provides useful methods for allocating and reallocating array memory regions.

It is possible that the above heap defragmentation approach may not always work because the
operating system doesn’t always consolidate returned RAM properly (thank Bill). This will
manifest itself in a refusal to allocate array space that you know it should be able to. The only
recourse is to save your files, exit SIMION, and then restart.

Be Temperate in Your Array Sizing

The bottom line here is not to be too greedy. Keep the size of your arrays reasonable.
Remember that a 10 million point potential array requires 100 Mb of RAM (or virtual
memory). Do you really need that large an array? The best policy is to start small and
increase size only when it becomes obvious that increased size appears necessary for a
successful simulation. You can always make use of array doubling later (Chapter 5) or if you
make use of geometry files (Appendix J), project the definitions into a larger array.

File Saving

If you want to preserve it - save it. Because SIMION keeps everything in RAM during the
program session, everything goes away when the program session ends. It is your responsibility to
save things you want to keep between sessions: Potential arrays, workbench definitions, ion
definitions, data recording definitions, and contouring definitions.

Potential Arrays Not Associated with an .I0B File

If you want the current potentials (assuming you have changed them) of a .PA or .PAO array
(not associated with an .JOB file) to be retained for future use between sessions you must save
them. This assumes that you plan to load the array via an Old or Load command and expect
to see the potentials retained.
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Potential Arrays Associated with an .I0B file

The workbench definition .1OB files of the View function automatically remember the
potentials (when the JOB was saved) of all potential array files they reference (e.g. .PA and
.PAQ). When an .IOB is reloaded, SIMION asks if you want it to re-adjust the arrays to these
potentials (via the appropriate Fast Adjust methods).

Thus, if you are making use of .JOB files (recommended practice) you really do not need to
save the current potentials of .PA or .PAO files. Note: A up-to-date refined image of each
referenced potential array file (e.g. .PA and .PAQ) must always be in the project directory
Sor this to work properly.

File Compatibility With Earlier SIMION Versions

All SIMION 6.0 file formats are upward compatible with SIMION 7.0. However, some file formats
are not downward compatible from 7.0 to 6.0 (e.g. .JON). See Appendix D for the details.

In general, no file formats from the earlier SIMION versions 2.0 o 5.0 are compatible with SIMION
7.0. SIMION will however convert potential arrays with either .PA or .PA# extensions to 7.0 format.
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