User Programming

~ User Programming

Introduction

SIMION 7.0 incorporates a very powerful feature called User Programs. This feature allows you to
model ion traps, quadrupoles, RF tuned devices, time-of-flight components, collision cells, and all
sorts of other things. As you become familiar with user programming, it will become apparent that
you are really only limited by your imagination.

Whenever SIMION loads either a .PA or .PAO file it looks for an associated .PRG user program file.
All such user program files will be automatically compiled and used when flying ions to modify
SIMION’s behavior (ONLY when an ion is in an instance that uses a potential array that has
associated user programs e.g. a .PRG file). These program fragments run about 2-5 times slower than
direct C code modifications of SIMION (quite fast).

SIMION contains a User Program debugger/compiler (accessed via the Test & Debug button on the
Main Menu Screen) to assist you in the testing, debugging, and development of your user programs.
The EDY editing program supplied with SIMION (or an editor of your choice - see EDY - Appendix H)
can be accessed from within the debugger to create/modify these user programs.

What Is a User Program ?

A user program is an ASCII file that contains one or more program segments (e.g. sub-programs)
written in an HP RPN calculator style language. A user program file (and its program segments) is
always associated with one and only one potential array. As an ion flies within an array instance that
projects a potential array with associated user program segments, SIMION automatically calls each
program segment at the appropriate times to allow it to control how the ion flies.

Trzck Usea crude no-field 3D array (with user programs) sized to workspace volume as mstance 4
to control ions outside normal instances. :

These program segments can dynamically change fast adjust and/or fast scale electrodes; electrostatic
and magnetic fields; ion accelerations; and all sorts of other things. A user program file has the same
name as the potential array name it supports and the extension .PRG (e.g. TEST.PRG is the user
program file for TEST.PA). User Programs can be turned off (See Adj Var. Section).

Program Segments Within a User Program File

A user program file is composed of an optional Define_Data segment and from one to nine program
segments. Each included program segment has a different specific purpose and particular access and
control capabilities. SIMION’s user program feature is designed to allow any legal combination of user
program segments to work together to provide the desired modeling. User programs are much like
subroutines because they can communicate, share data, and otherwise support each other. The material
below gives a very brief introduction to these program segments:

Appendix | I-1

User Programming

Seg Define_Data

This segment is always the first segment in any user program file (you are not required to declare
it - assumed first segment by default). It contains the definitions for global variables and array
variables (visible to all active user program segments - in all instances that support user
programs). These variables are used for storage and communication between user programs.

Two types of global variables and array variables are supported: Adjustable and Static.
Adjustable variables are displayed/adjusted at the beginning of each Fly’m (adjustable variables
can also be user accessed while ions are flying) to allow you to change or adjust the function of
your user program segments without having to edit them. The lifetime of Adjustable variables is
that of the total fly’m including any reruns. Static variables are not user adjustable but are directly
accessible to all active user programs for other control and storage functions. The lifetime of
Static variables is the lifetime of the current ion or group of ions while they are flying.

The Nine Types of User Program Segments

The nine types of program segments utilize a powerful monitor, analyze, and modify paradigm. Each
type of user program segment is only allowed to perform certain specific functions. In general,
SIMION calculates something first (e.g. the next time step to use) and then calls a specific program
segment (e.g. the program segment Tstep_Adjust) if it is defined in the ion’s current instance. The
called user program segment can then monitor, analyze, and modify its allowed parameters as needed
(e.g. the next time step to use). Many types of user programming segments may be able to monitor a
parameter (e.g. ion velocity) but only a few are allowed to modify it (e.g. ion velocity — Initialize and
Other_Actions). This provides real power without permitting total chaos.

Only one type of each program segment is allowed in any one user program file. The following is a
brief introduction to each program segment type:

Program_Segment Initialize

The Initialize segment is used to dynamically change an ion’s initial parameters and
conditions. This program segment can output messages and control looping back for another
run (e.g. useful for automatic focusing user programs).

Program_Segment Init_P_Values

A program segment called Init_P_Values initializes (if it exists) via fast adjust and/or fast
scaling methods entire potential arrays before flying any ions. Note: Unlike all the other
program segments, ions do not kave to be in the instance to have the Init_P_Values program
segment called. This also means that the ion and instance context have no meaning within
this program segment (¢.g. ion and instance related variables are not accessible).

Program_Segment Tstep_Adjust

The Tstep_Adjust segment can be used to examine and possibly change the integration time
step (in microseconds). This program segment (if it exists) is called after SIMION has
determined the next integration time step and just before the integration time step is
performed.

Program_Segment Fast_Adjust

The Fast_Adjust segment can be used to examine/adjust the electrode/pole potentials of fast
adjustable and/or fast scaleable array instances (e.g. with .PAO potential arrays) as the ion
flies. This program segment (if it exists) is called to adjust the array’s potentials before any
initial field determinations are made.

-2 Appendix |

User Programming

Program_Segment Efield_Adjust

The Efield_Adjust segment is used to examine/change the electrostatic field potentials and
gradients calculated for each time step. Note: this segment type can only be used with
electrostatic potential arrays.

Program_Segment Mfield_Adjust

The Mfield_Adjust segment is used to examine/change the magnetic fields calculated for
each time step. Note: this segment type can only be used with magnetic potential arrays.

Program_Segment Accel_Adjust

The Accel_Adjust segment is used to examine/change the acceleration components for each
time step.

Program_Segment Other_Actions

The Other_Actions segment is called just after each time step. It is used to examine/change
ion parameters like: Mass, velocity, splat, and etc. Moreover, the user can output messages
and results to the data recording screen and file.

Program_Segment Terminate

The Terminate segment is called just after all ions have died (splaf). It is used to examine
ion parameters like: Mass, velocity, and etc. This program segment can output messages and
control looping back for another run (e.g. useful for automatic focusing user programs).

Two Examples of a SIMION User Program File

The following listings are of a simple Accel_Adjust program segment for adding Stokes Law viscosity
effects that were created with two very different programming styles:

A Questionable Programming Style

defa viscous_damping 0,seg accel_adjust rcl ion_ax_mm
rcl ion_vx_mm rel viscous_damping * - sto ion_ax_mm
rcl ion_ay_mm rel ion_vy_mm rcl viscous_damping * -
sto ion_ay_mm rclion_az_mm rcl ion_vz_mm

rcl viscous_damping * - sto ion_az_mm

A Suggested Programming Style

; This Accel_Adjust program segment adds a simple Stokes’ Law Viscosity Effect.

; It serves as a starting point for dabbling in ion mobility and atmospheric ion sources.

; The program segment makes use of a simple viscous damping factor and linear viscosity.

; Note: This program segment has problems with high viscosity (see page I-29 for fixed version).

;Note: a Begin_Segment Define_Data is not required (the compiler assumes it)
Define_Adjustable Viscous_Damping 0 ; adjustable variable Viscous_Damping

; set to 0 (no viscous damping by default)
; adjustable at the beginning of each Fly'm

Appendix | -3

User Programming

Begin_Segment Accel_Adjust ; start of Accel_Adjust program segment
Recall lon_Ax_mm ; recall current X acceleration (mm/usec’)
Recall lon_Vx_mm ; recall current x velocity (mm/sec)
Recall Viscous_Damping ; recall the viscous damping term
Multiply ; multiply times x velocity
Subtract ; and subtract from x acceleration
Store lon_Ax_mm ; return adjusted value to SIMION
Recall lon_Ay_mm ; recall current y acceleration (mm/usec’)
Recall lon_Vy_mm ; recall current y velocity (mm/sec)
Recall Viscous_Damping ; recall the viscous damping term
Multiply ; multiply times y velocity
Subtract ; and subtract from y acceleration
Store lon_Ay_mm ; return adjusted value to SIMION
Recall lon_Az_mm ; recall current z acceleration (mm/usec’)
Recall lon_Vz_mm ; recall current z velocity (mm/sec)
Recall Viscous_Damping ; recall the viscous damping term
Multiply ; multiply times 2 velocity
Subtract ; and subtract from z acceleration
Store lon_Az_mm ; return adjusted value to SIMION

Exit ; exit to SIMION (optional statement)

Language Rules and Machine Model

Both of the above programs will generate the same compiled code and will run at the same speed.
However, the second example will be easy to support and modify later. Remember, you have the
freedom to make your programs as cryptic or verbose as you like. There are several characteristics of
the language that should be apparent:

Upper and Lower Case

SIMION ignores the case of the statements entered. You may use upper and lower case freely to
improve readability.

Blank Lines and Indention’s

Blank lines are ignored. Use blank lines to create good visual separation of various regions of a
program. You may indent code as desired. When properly used, indention’s can significantly
improve code readability.

The Semicolon ; Starts an In-line Comment

In-line comments begin with a semicolon (use a leading space or comma in front of the semicolon
Jfor separation from any preceding word). All information after the semicolon (including the
semicolon) is ignored by the compiler. Unlike interpreted programs, these comments have no
effect on the speed of user program execution (so use them!),

Appendix |

User Programming

Word Oriented Language Structure

The user programming language makes use of a word oriented structure. This means that a
program is a collection of words separated by any number of spaces, commas, tabs, and/or lines.
These words are analyzed to create the pseudo-machine code that SIMION actually executes.

Lines have no meaning except that all words bevond column 200 will be ignored.

SIMION checks each word to see if it is a command, number, reserved variable, variable, or label
(in that order).

Command Words

SIMION’s language treats all command words (e.g. STO) as reserved words (cannot be used for

any other purpose - except in comments). Note: Most commands have synonyms (e.g. STO
and STORE). This allows you more freedom of expression in making your programs as cryptic or
verbose as desired. Each command will be covered in detail below.

Numbers

Any word that can be converted into a number will be! Thus commands or names cannot be
numbers (e.g. 1.24¢-5 is a number, 12345t is not a number). A number appearing where the
compiler expects a command will be interpreted as Recall Constant (of the value of the number).

The RPN Registers

SIMION makes use of a ten register rotary stack. Movement around the stack is automatic via the
insertion and combining of numbers (double precision - 64 bif). The stack pointer rolls around the
stack so that it always points at the current number (last entered or a command result).

The current number is always designed in the x-register. The number directly above it (preceding
if) is in the y-register, above it is the z-register, then the t-register, and so on.

e Functions like SIN replace the current value of the x-register with its sine (the x-register
pointer is unchanged).

¢ Other functions like + add the x and y register values together and place the result in the y-
register which now automatically becomes the new x-register (the x-register pointer is rolled

up one register).

e Entering a number or recalling a variable places the new number in the register directly below
the current x-register. This register now automatically becomes the new x-register (the x-
register pointer is rolled down one register).

Variable Names and Labels

Words that arent commands and can’t be converted into numbers are considered to be candidates
for variable names and labels. A variable name or label follows C naming conventions. The first
character must be a letter or underscore (e.g. _). All remaining characters must be letters,
numbers, or underscores. The first 31 characters of variable names and labels are significant (for
matching purposes). Unlike C, SIMION ignores the case of the variable names and labels (it
retains case for display purposes only).

Appendix | I-5

User Programming

Moreover, certain names are used for reserved variables. These variables (e.g.
Ton_Time_of_Flight) allow you to exchange information with and exert control over SIMION.
Each of the reserved variables will be covered in detail below.

Unit, Orientation, and Angular Conventions

SIMION’s Standard Unit Systems

The basic position/length unit is millimeters (mm) or grid units (gu) depending on the
command or reserved variables. Time is measured in microseconds (lsec). Velocity is
mm/usec. Acceleration is in mm/usec’. Magnetic fields are in Gauss. Electrostatic gradients
are in volts/mm or volts/gu (depending on the reserved variable).

Three unit systems are used in connecting user programs with SIMION (via Reserved
variables):

1. The first unit system is the currently aligned workbench coordinates (mm) and
orientation (Variables using these coordinates/orientations have names ending with
_mm). Variables using this unit system share the locations and orientations of the
currently aligned workbench coordinates (including Align button status).

2. The second unit system is the ion’s current instance’s PA volume coordinates (gu) and
orientation (Variables using these coordinates/orientations have names ending with _gu).
PA volume coordinates are the 3D instance coordinates (in gu) displayed by where in
View. Reversible 3D transformations can be performed between. currently aligned
workbench coordinates and PA volume coordinates of the ion’s current instance.

3. The third unit system is the ion’s current instance’s PA Array coordinates (Variables
using these coordinates have names ending with _Abs_gu). Note: Coordinate
transformations from 3D PA volume coordinates into the 2D or 3D coordinates of the
actual potential array are non-reversible. For 3D arrays x, y, and z are converted into
their absolute values. For 2D planar x and y are converted to their absolute values and z
is set to zero. For 2D cylindrical x is converted to its absolute value, y and z are
converted into r, which is stored in y, and z is set to zero.

SIMION’s Angular Conventions

Several user program commands make use of angular input and output parameters (e.g. az and
el). Angular parameters are either in degrees or radians. Each command that makes use of
angles will state whether the angles are in degrees or radians.

Commands making use of azimuth and/or elevation angles follow the following conventions:

az Azimuth angle to apply when projecting the internal coordinates into external
coordinates. Azimuth
angle is degrees of ccw
rotation about the y-axis
in degrees looking down
the positive y-axis toward
the origin.

Y Axis

"
AN
Ql‘fo"o‘

Azimuth of 90 degrees. Et Angle
Internal z-axis made
paraliel to external x-axis.
Internal x-axis made
parallel to external
negative z-axis. Internal
y-axis remains parallel to Angular Orientations

Az Angle

4
s Ty,

I-6 Appendix |

User Programming

external y-axis (assuming el = 0).

el Elevation angle to apply when projecting the internal coordinates into external
coordinates. Elevation angle is degrees of ccw rotation about the z-axis in
degrees looking down the positive z-axis toward the origin .

Elevation of 90 degrees. Internal x-axis made parallel to external y-axis.
Internal y-axis made parallel to external negative x-axis. Internal z-axis remains
parallel to external z-axis (assuming az = 0).

Azimuth and elevation transformations are applied in the following order:

1. The elevation (el) transformation is applied creating an interim coordinate system.
2. The azimuth (az) transformation is then applied to the interim coordinate system to
create the resulting coordinate system.

PROGRAMMING COMMANDS

The following is a detailed discussion of each legal user programming command including examples of
use. Unless stated otherwise, each command is legal in any program segment. Command synonyms
(if any) appear after the or:

+ or: Add

Adds contents of x and y registers, puts result in y-register, and renames it as x-register
(e.g. 1 2+ becomes 3 in register where 1 was originally stored).

- or: Subtract

Subtracts x from y, puts result in y, and renames it x (e. 8 11 5. becomes 6 in register where 11
was originally stored).

* or: Multiply

Multiplies x and y, puts result in y, and renames it x (e.g. 5 6 * becomes 30 in register where 5
was originally stored).

/ or: Divide

Divides x into y, puts result in y, and renames it x (e.g. 60 10/ becomes 6 in register where 60
was originally stored).

1/X or: Reciprocal_of X

Converts the contents of the x-register to its reciprocal (e. & 10.0 1/X becomes 0.1).

107X or: 10_to_the X

Converts the contents of the x-register to 10% (e.g. 3 10°X becomes | 000).

Appendix I -7

User Programming

>ARR or: PA_Coords_to_Array_Coords

Converts 3D point from the current instance’s Potential Array volume coordinates to actual
potential Array coordinates (position according to array type: 2D, Cylindrical, 3D and etc.). On
entry the X, y, and z registers are assumed to contain the point’s X, y, and z PA volume coordinates
(in gu — grid units). On exit the x, y, and z registers contain the point’s actual Array coordinates
(in gu). This is not a reversible transformation. For 3D arrays X, y, and z are converted into their
absolute values. For 2D planar x and y are converted to their absolute values and z is set to zero.
For 2D cylindrical x is converted to its absolute value, y and z are converted into r, which is stored
iny, and z is set to zero.

>AZR or: Azimuth_Rotate

Rotates a 3D vector in the azimuth direction (rotation around the y component axis. e.g. for -90
degrees old x component becomes new z component). On entry the y, z, and t registers are
assumed to contain the vector’s X, y, and z components respectively. The x-register contains the
azimuth angle of rotation (in degrees ccw from x-axis looking down the positive y axis toward the
origin). On exit the x, y, and z registers contain the vector’s rotated X, y, and z components.

>DEG or: Radians_to_Degrees

Converts value in x-register from assumed radians to degrees(e.g. 3.1459 >DEG becomes 180).
The >RAD command performs the reverse transformation.

>ELR or: Elevation_Rotate

>KE

Rotates a 3D vector in the elevation direction (rotation around the z component axis. e.g. for +90
degrees old x component becomes new 'y component). On entry the y, z, and t registers are
assumed to contain the vector’s X, v, and z components. The x-register contains the elevation
angle of rotation (in degrees cew from x-axis looking down the positive z axis toward the origin).
On exit the x, y, and z registers contain the vector’ rotated x, y, and z components.

or: Speed_to_Kinetic_Energy

>P

Converts from speed (mm/usec) to kinetic energy (eV). On entry the x-register is assumed to
contain the ion’s speed (mm/isec) and the y-register is assumed to contain the mass of the ion
(amu). On exit the x-register contains the ion’s KE (eV) and the y-register is unchanged. This
transform uses relativistic corrections. The >SPD command performs the reverse transformation.

or: Rect_to_Polar

Converts from 2D rectangular to 2D polar coordinates. On entry the x-register is assumed to
contain the x value and the y-register is assumed to contain the y value. On exit the x-register
contains the radius and the y-register is contains the angle theta in degrees. The >R command
performs the reverse transformation.

>P3D or: Rect3D _to Polar3D

Converts from rectangular 3D to polar 3D coordinates. On entry the x, y, and z register are
assumed to contain the rectangular x, y, and z vector components. On exit the x-register contains r
(radius), the y-register contains the azimuth angle in degrees, and the z-register the elevation angle
in degrees. The >R3D command performs the reverse transformation.

Appendix |

User Programming

>PAC or: WB_Coords_to_PA_Coords

Converts 3D point from workbench coordinates (in mm - current workbench alignment) to
Potential Array volume coordinates (in gu - from ion’s current instance’s working origin). On
entry the x, y, and z registers are assumed to contain the point’s x, y, and z WB coordinates (mm).
On exit the x, y, and z registers contain the point’s PA volume coordinates (gu). The >SWBC
command performs the reverse transformation.

>PAO or: WB_Orient_to_PA_Orient

>R

Converts 3D vector from workbench orientation (current alignment) to Potential Array volume
orientation (of ion’s current instance). On entry the x, y, and z registers are assumed to contain the
vector’s X, y, and z WB components. On exit the x, y, and z registers contain the vector’s PA
components. Note: The magnitude of the vector is not changed. Its three component vectors are
now aligned with the current instance’s x, y, and z axis. The >SWBO command performs the
reverse transformation.

or: Polar_to_Rect

Converts from 2D polar to 2D rectangular coordinates. On entry the x-register is assumed to
contain r (radius) and the y-register is assumed to contain the angle theta in degrees. On exit the
x-register contains the x value and the y-register contains the y value. The >P command performs
the reverse transformation.

>R3D or: Polar3D_to_Rect3D

Converts from polar 3D to rectangular 3D coordinates. On entry the x-register is assumed to
contain r (radius), the y-register is assumed to contain the azimuth angle in degrees, and the z-
register the elevation angle in degrees. On exit the x, y, and z registers contain the rectangular x,
¥, and z vector components. The >P3D command performs the reverse transformation.

>RAD or: Degrees_to_Radians

Converts value in x-register from assumed degrees to radians(e.g. 180 >RAD becomes 3.1459).
The >DEG command performs the reverse transformation.

>SPD or: Kinetic Energy_to_Speed

Converts from kinetic energy (eV) to ion speed (mm/usec). On entry the x-register is assumed to
contain the ion’s KE (eV) and the y-register is assumed to contain the mass of the ion (amu). On
exit the x-register contains the ion’s speed (mm/usec) and the y-register is unchanged. This
transform uses relativistic corrections. The >KE command performs the reverse transformation.

>WBC or: PA_Coords_to_ WB_Coords

Converts 3D point from the current instance’s Potential Array volume coordinates (in gu — ion’s
current instance’s working origin) to workbench coordinates (in mm — current workbench
alignment). On entry the x, y, and z registers are assumed to contain the point’s PA x,y, and z
volume coordinates (in gu). On exit the x, y, and z registers contain the point’s WB Coordinates
(in mm). The >PAC command performs the reverse transformation.

Appendix | -9

User Programming

>WBO or: PA_Orient_to_WB_Orient

Converts 3D vector from the ion’s current instance's Potential Array volume orientation to
workbench orientation (current alignment). On entry the X, y, and z registers are assumed to
contain the vector's PA x, y, and z aligned components. On exit the x, y, and z registers contain
the vector's WB aligned components. Note: The magnitude of the vector is not changed, only
orientation of its vector components. The >PAQO command performs the reverse transformation.

ABS or: Absolute Value

Converts the contents of the x-register to a positive number (e.g. -2.5 ABS becomes 2.5).

ACOS or: Arc_Cosine

Converts the contents of the x-register to arc cosine (in radians) (e.g. 1.0 ACOS becomes 0.0).

ADEFA or: Array_Define_Adjustable
ADEFA Name Size ; “filename” (e.g. ADEFA Energy 100 ; “energy.dat”)

Only Legal in Define_Data Segment

Three word command that defines an adjustable array named Name with a size of Size elements
(must be I or greater). Name must not conflict with any reserved word or previously defined
variable (any type) or label. Example: ADEFA Energy 100 ; “energy.dat” Means define an
adjustable array named Energy, 100 elements in size. Pre-zero and then auto-initialize the array at
the beginning of each Fly’m (but not each rerun) with the file energy.dat (see page I-19 for
initialization file format).

Note: The initialization file is optional. If provided, it must appear somewhere within the
following inline comment (after a ‘;”) and be enclosed in quotes (‘). If there are more values in
the optional initialization file than the defined array size, SIMION will only read the number of
values required to fill the array. If there are fewer values in the file than the defined array size,
SIMION will load the values provided, starting with the first array element, and the remaining
array elements will remain zeroed.

ADEFS or: Array_Define_Static
ADEFS Name Size ; “filename” (e.g. ADEFS Voltage 400 ; “voltages.dat”)

Only Legal in Define_Data Segment

I-10

Three word command that defines a static array named Name with a size of Size elements (must
be 1 or greater). Name must not conflict with any reserved word or previously defined variable
(any type) or label. Example: ADEFS Voltage 400 ; ‘“voltages.dat” Means define a static array
named Voltage, 400 elements in size. Pre-zero and then auto-initialize the array just before flying
each ion (or group) with the file voltages.dat (see page I-19 for initialization file format).

Note: The initialization file is optional. If provided, it must appear somewhere within the
following inline comment (after a) and be enclosed in quotes (). If there are more values in
the optional initialization file than the defined array size, SIMION will only read the number of
values required to fill the array. If there are fewer values in the file than the defined array size,
SIMION will load the values provided, starting with the first array element, and the remaining
array elements will remain zeroed.

Appendix |

User Programming

ALOAD or: Array_Load

ALOAD Name ;“filename” (e.g. ALOAD Energy ; “energy.dat”)
Adjustable Arrays: Legal in any Program Segment
Static Arrays: lllegal in Initiate and Terminate Segments

Three word command that loads an array named Name with the contents of the file filename.
Name must be a previously defined adjustable or static array. ALOAD will read the same free
format ASCII file format as described above for initialization files. Example: ALOAD Energy ;
“energy.dat” Means pre-zero all elements of the array named Energy and then load them with the
contents of the energy.dat file (see page I-19 for initialization file format).

Note: The filename is required. 1t must appear somewhere within the following inline comment
(after a ;’) and be enclosed in quotes (**’). If there are more values in the file than the defined
array size, SIMION will only read the number of values required to fill the array. If there are
fewer values in the file than the defined array size, SIMION will load the values provided starting
with the first array element, and the remaining array elements will remain zeroed.

ARCL or. Array_Recall

ARCL Name
Adjustable Arrays: Legal in any Program Segment
Static Arrays: lllegal in Initiate and Terminate Segments

Uses the current value of the x-register as a index value to array Name, and replaces the index
value in the x-register with the value of the array element designated by the index value. The stack
pointer remains unchanged. If the index value is beyond the array limits (<J or >size) a runtime
error help screen will be generated. (e.g. 30 ARCL VOLTS recalls the value of the 30" element
of the array VOLTS and inserts it into the x-register replacing its previous value of 30).

This command is designed to minimize stack clutter by replacing the specified array index with the
array element’s value. The following 2D array index computation serves to demonstrate:

RCLY RCLNX*RCL X + ;index = x + nx *y 2D array mapped into 1D array
ARCL ARRAY_2D ;X-register has value - no index clutter remains on stack

ASAVE or: Array_Save

ASAVE Name ;“filename” (e.g. ASAVE Energy ; “energy.dat”)
Adjustable Arrays: Legal in any Program Segment
Static Arrays: lllegal in Initiate and Terminate Segments

Three word command saves the values of all elements of an array named Name to the file
Jfilename. Name must be a previously defined adjustable or static array. If the file filename
already exists, its previous contents will be destroyed. The format of the saved file is ASCII with
five comma separated numbers per line. Example: ASAVE Energy ; “energy.dat” Means save
all elements of the array named Energy to the energy.dat file.

Note: The filename is required. 1t must appear somewhere within the following inline comment
(after a ;) and be enclosed in quotes (“*?).

ASIN or: Arc_Sine

Converts the contents of the x-register to arc sine (in radians) (e.g. 1.0 ASIN becomes 1 .570796).

Appendix | I-11

User Programming

ASTO or: Array_Store

ASTO Name
Adjustable Arrays: Legal in any Program Segment
Static Arrays: lllegal in Initiate and Terminate Segments

Stores the value in the y-register to the array element in the array Name designated by the index
value in x-register. The stack pointer is rolled up by one (e.g. the old y-register is now the new x-
register). If the index value is beyond the array limits (<] or >size) a runtime error help screen
will be generated. (e.g. RCL V1 15 ASTO VOLTS recalls the value of the variable V1 and
stores this value in the 15" element of the array VOLTS and then rolls up the register pointer by
one. The x-register now points to the value loaded by RCL V1).

This command is designed to minimize stack clutter by rolling up the stack pointer by one affer
command execution. The following 3D array index computation serves to demonstrate:

50 ARCL VOLTS ;Joad x-register with 50" element of array volts (item to save)
RCLZ RCLNY *RCLY +
RCLNX *RCL X + sindex = X + nx *(y + ny *z) 3D array mapped into 1D array
ASTO ARRAY_3D ;X-register points to starting value - no index clutter remains
ATAN or: Arc_Tangent
Converts the contents of the x-register to arc tangent (in radians) (e.g. 1.0 ATAN becomes
0.785398).
BEEP or: Beep_Sound

Makes a beep sound (e.g. BEEP ---> beep!!). Same sound as BELL command.

BELL or: Ring_Bell

Rings computer’s bell (e.g. BELL ---> beep!!).

CHS or: Change_Sign

Reverse the sign of the number in the x-register (e.g. 2.0 CHS becomes -2.0).

CLICK or: Click_Sound

Makes a click sound (e.g. CLICK ---> click!!).

cos or: Cosine

Converts the contents of the x-register (in radians) to cosine (e.g. 0.0 COS becomes 1.0).

DEFA or: Define_Adjustable
DEFA Name Number (e.g. DEFA Omega 1.0)
Only Legal in Define_Data Segment

Three word command defines an adjustable variable named Name with an initial value of Number
(must be an actual number). Name must not conflict with any reserved word or previously

I-12 Appendix |

User Programming

defined variable (any type) or label. Example: DEFA Omega 1.0 Means define adjustable
variable named Omega with initial value of 1.0. Can only appear in a Define Data segment. See
discussion on variables below for more information.

DEFS or: Define_Static
DEFS Name Number (e.q. DEFS Flag 0.0)
Only Legal in Define_Data Segment

Three word command defines a static variable named Name with an initial value of Number
(must be an actual number). Name must not conflict with any reserved word or previously
defined variable (any type) or label. Example: DEFS Flag 0.0 Means define static variable named
Flag with initial value of 0.0. Can only appear in a Define Data segment. See discussion on
variables below for more information.

EAX or: E_to_the X

Converts the contents of the x-register to e* (e.g. 1.0 EAX becomes 2.71 828).

ENTR or: Enter Duplicate_X

Rolls the register pointer down one and copies the contents of the old x-register into the new
x-register (e.g. 3 ENTR * duplicates 3, squares it and places 9 in initial x-register).

EXIT

Exits the current program segment and returns to SIMION (e.g. 3 X>0 EXIT ENTER exits
program segment because 3 is greater than zero). This is the default command loaded into all of
program memory.

FRAC or: Decimal_Fraction

Converts the contents of the x-register to its decimal fraction component (e.g. 2.58 FRAC becomes
0.58).

GSB or: GoSub Go_Subroutine
GSB Lahel

Unconditional jump to subroutine at label named Label. Label name must be a legal label defined
elsewhere in the same program segment by a LBL statement. The first encounter of a RTN
command within the subroutine will cause execution to resume just after the calling GSB Label
statement. Subroutines can be nested up to 100 levels deep. Example: GSB Double means
Jjump to the label named Double (a subroutine) and return after encountering a RTN statement.

GTO or: Goto Go_To
GTO Label

Unconditional jump to label named Label. Label name must be a legal label defined elsewhere in
the same program segment by a LBL statement. Example: GTO Entrya means jump to the label
named Entrya.

Appendix | 1-13

User Programming

INT or: Integer

Converts the contents of the x-register to its integer component (e.g. 2.58 INT becomes 2.0).

"~ KEY? or: Check_For_Key_Input
Only Legal in Other_Actions

Checks for keyboard input, and inserts the upper case key code in x-register after rolling pointer
down one register. If no keyboard input is available a zero is placed in the x-register. The actual
key codes generated can be found with the KEY? test button in the debugger.

LBL or: Label Entry Subroutine
LBL Label

Marks a code entry point (jump or subroutine) with the name of Label. Label name must not
conflict with any reserved word or previously defined variable (any type) or label. Example: LBL
Double means an entry point called Double. Note: SIMION will only allow jumps or subroutine
calls to locations within the same program segment.

LN or: Natural_Log

Converts the contents of the x-register to natural logarithm (e.g. 2.71828 LN becomes 1.0).

LOG or: Base_10_Log

Converts the contents of the x-register to base, logarithm (e.g. 1000 LOG becomes 3.0).

MARK -or: Mark_All_lons
Only Legal in Other_Actions Segment

Sets markers for all ions. Useful for making visual marks and as an event to trigger data recording.
Note: Forces drawing of current ion trajectory line segment. Handy for forcing clean changes in
ion color and etc.

MESS or: Message
MESS ;Xreg=# andYreg=+#
Only Legal in Initialize, Other_Actions, & Terminate

Displays the following (same line) comment (30 chars max - without the ;) as a data record line.
Useful for user prompts and recording data. Note: Each # character is replaced by a register
value (the first left-to-right # is x register value the second is y register value and so on). In the
example above (assuming x = 23 and y =125.3) the output would be: X reg =23 and Y reg =
125.3. The actual format used for displaying the # numbers is the same as currently defined for

data recording.

NINT or: Nearest_Integer

Replaces the contents of the x-register to its nearest integer value (e.g. 1.9 NINT becomes 2.0).
Useful to insure precise whole values when testing numbers for being equal. The equals test can
often be uncertain for floating point numbers (requires all bits to be the same to be equal).

I-14 Appendix |

User Programming

NOP

The NOP command does nothing. It can be used to fill space or kill time (e.g. NOP NOP NOP
NOP KEY? (ills a little time before a key test).

R/S or: Run/Stop
Only Legal in Initialize, Other_Actions & Terminate

Program halts execution, informs user on the display, and requests a keystroke to resume. The
upper case key code for the key entered will be in the new (rolled down by one) x-register when
execution resumes. The actual key codes generated can be found with the KEY? test button
in the debugger.

RAND or: Random_Number

Rolls the register pointer down one and inserts a random number between 0 and 1 into the new
x-register. SIMION 7.0 uses a new pseudo-random number generator. See Appendix E (E-15) for
more details.

RCL or: Recall
RCL Name

Rolls the register pointer down one and inserts the value of the variable Name in the new
x-register. Name must be a currently active variable name that the user program segment is
allowed to reference (e.g. RCL TEMPI recalls value of variable named TEMPI). See more
information below concerning: Adjustable, static, reserved, and temporary variables.

REDRAW or: Redraw_Screen
Only Legal in Initialize, Other_Actions, & Terminate

Redraws current View window. Useful if you want to erase unsaved trajectory vectors.

RLDN or: Roll_Register_Pointer_ Down

Rolls the x-register pointer down by one (or registers up by one HP convention). The current
y-register was the prior x-register (e.g. 5 10 RLUP RLDN has 10 in the new x-register).

RLUP or: Roll_Register_Pointer_Up

Rolls the x-register pointer up by one (or registers down by one HP convention). The current
x-register was the prior y-register (e.g. 5 10 RLUP has 5 in the new x-register).

RTN or: Return Return_From_Subroutine

Returns to statement after the calling GSB if in a subroutine else returns to SIMION from called
user program segment. Note: Use EXIT to force return to SIMION from program segment.

Appendix | I-15

User Programming

SEED or: Random_Seed

Uses the current contents of the x-register as a new seed to re-randomize the random number
generator (slow). The x-register is unchanged. A value of 0.0 resets generator to its value at
program start (fast). New random number generator used with SIMION 7.0 (see Appendix E-15).

SEG or: Begin_Segment
SEG Name

SIN

Begins a new data definition or program segment. Name must be one of the following:
Define_Data, Initialize, Init_P_Values, Fast_Adjust, Efield_Adjust, Mfield Adjust,
Accel_Adjust, Other_Actions, or Terminate(e.g. SEG Efield_Adjust starts the efield adjust
program segment). The SEG command automatically inserts a leading EXIT command to force
exiting of any preceding program segment. See discussion of program segments below for more
details.

or: Sine

Converts the contents of the x-register (in radians) to its sine (e.g. 1.570796 SIN becomes 1.0).

SQRT or: Square_Root

Converts the contents of the x-register to its square root (e.g. 81 SQRT becomes 9.0).

STO or: Store
STO Name

Stores the current contents of the x-register into the variable named Name. Name must be a
currently active variable name that the user program segment is allowed to reference. If Name
does not exist and it is not illegal, the compiler will create a temporary variable named Name
(e.g. STO TEMP1 store x-register value to existing variable TEMP1 or to a created temporary
variable of that name). See more information below concerning: Adjustable, static, reserved, and
temporary variables.

TAN or: Tangent

Converts the contents of the x-register (in radians) to its tangent (e.g. 1.0 TAN becomes
1.557408).

X><Y or: X<>Y XY_Swap Swap_XY

I-16

Exchanges the values in the current x and y registers (e.g. 1 2 X><Y puts 2 in y-register and I in x-
register).

Appendix |

User Programming

X=0 or: If_X_EQ_0 If_X_Equals_0

X!=0 or: If_ X_NE 0 If_X_Not_Equal_0

X<0 or: If X_ LT 0 If_X_Less_Than_0

X<=0 or: If X LE_0 If_X_Less_Than_Or_Equal 0
X>0 or: If X_GT_0 IK_X_Greater_Than_0

X>=0 or: If X_GE_0 If X _Greater_Than_Or_Equal_0

The six test commands above compare the x-register value to zero. If the selected test is true the
next instruction following the test will be executed (do if true). Else the next instruction will be
skipped (e.g. 5 X>=0 GSB MORE RTN results in calling subroutine MORE because 5 is greater
or equal to 0).

X=Y or: If X_EQ_Y If X_Equals_Y

Xi=Y or: If_ X _NE_Y If_X_Not Equal Y

X<Y or: If X LT Y If_X_Less_Than_Y

X<=Y or: If X LE_Y If X_Less_Than_Or_Equal_Y
X>Y or: f X GT_Y If X_Greater_Than_ Y

X>=Y or: If X GE_Y If_X_Greater_Than_Or_Equal_Y

The six test commands above compare the x-register value to the y-register. If the selected test is
true the next instruction following the test will be executed (do if true). Else the next instruction
will be skipped (e.g. 3 5 X<Y GSB MORE RTN results in executing RTN because 5 is not less
than 3).

User Adjustable Variables

These are variables defined by three word DEFA NAME VALUE statements placed in the
Define_Data segment (at the top of a user program file). Adjustable variables are read/write global
variables that SIMION allows you to assign new values to before (and during) each Fly’m.

Adjustable variables are globally visible. Thus ALL user program segments in ALL user program

files that define an adjustable variable of the same name will actually reference the same
adjustable variable. The initial value of the adjustable variable will be that defined in the Sfirst user
program file compiled that defined the adjustable variable (always compiled in instance order).

Setting Adjustable Variables Before a Fly’m

When a Fly’m is initiated, user programs are automatically compiled and a list of adjustable
variables are displayed to allow the user to change their values. You can change an adjustable
variable's value before flying the ions. Any changes at this point will be retained for the next
Fly’m. Note: Changes to adjustable variables made while ions are flying (by you or user
programs) will be forgotten when the Fly’m terminates (this allows program segments to
communicate across rerun flights without permanently changing adjustable variables). Adjustable
variables are reset to program defined values when a new .IOB file is loaded or the user programs
are otherwise reset (e.g. leaving and re-entering View, using the debugger, and etc.).

Selective Display of Adjustable Variables

Normally it would be desirable to display an abbreviated list of only those adjustable variables that
the user really would want to change. If any adjustable variable name starts with a leading

Appendix | -17

User Programming

underscore (e.g. _Acceleration_voltage) then only it and other adjustable variables with names
beginning with an underscore character will (normally) be displayed.

However, it is recognized that there will be times when access to all adjustable variables may be
desired. A button has been provided to shift between views of selected (_OK) and all adjustable
variables (ALL). This button automatically appears at the top of the Adjustable Variables List
Window when leading underscore names have been defined for adjustable variables. The default
is _OK for displaying leading underscore variables only. However, if the button is depressed, the
word ALL appears and all the adjustable variables will be immediately shown. Any changes to
the current state of this option is conserved during the remainder of the SIMION session.

Note: The Adjustable Vanables List Window has an ON/OFF button for user programs. The

| ' ON/OFF button allows you to turn user programs off during the current. (and onlythe curr ent) Fly m.
This is handy for apphcat10ns when you may not want to use uset programs in certam runs (e.g. -
tuning). Hmt You can always deﬁne a dummy adJustable vanable to gam access to the ON/OFF
button.

-_ -

Changing Adjustable Variables While lons are Flying

SIMION also has an AdjV tab on the top of the View Screen that will be unblocked whenever
adjustable variables are active during a Fly’m. Clicking this tab will give you access to
adjustable variables (via a panel screen) while ions are flying (selection slider provided if more
than three variables to display). By default, SIMION displays the adjustable variables it
encountered when compiling your user programs. However, if any adjustable variable name
begins with an underscore (e.g. _Damping) only the adjustable variables compiled with leading
underscores will be displayed (allowing you to select your control variables). Avoid displaying
adjustable variables that the user programs write to (change), because SIMION will not display
these changes.

Static Variables

These are variables defined by the three word DEFS NAME VALUE statements placed in the
Define_Data segment (at the top of a user program file). Static variables are read/write global
variables. Static variables are very useful for record keeping within a user program segment and
for communications between two or more active user program segments.

Static variables are globally visible. Thus ALL user program segments in ALL user program
files that define a static variable of the same name will actually reference the same static variable.

The initial value of the static variable will be that defined in the first user program file compiled that
defined the static variable (compiled in instance order).

SIMION 7.0 (unlike 6.0) prevents access to static variables and static arrays (reading or writing) from
within the Initialize, Init_P_Values, and Terminate program segments. This is because the Initialize
program segments are called for all ions before the first ion is flown. The Init_P_Values segments are
also called before the first ion is flown. Moreover, the Terminate program segments are called only
after all ions have flown. Since all static variables and arrays are always reset just before each ion (or
group) is actually flown, static variables and static arrays cannot be passed information from Initialize,
to Init_P_Values, or pass information to Terminate. The blocking of static variable and static array
access in these three program segments was implemented to protect the user from coding errors (your
programs may have them).

1-18 Appendix |

User Programming

Unlike temporary variables the values of the static variables are not Sorgotten between calls to the user
program segment. Moreover, SIMION resets each static variable to its specified initial value at
the beginning of each individual or grouped ion trajectory calculation (flight or rerun).

Array Variables

Both adjustable and static array variables are supported. The array feature is fully integrated into user
programs including full program debugging and runtime error support.

Array Elements and Addressing

Each array element is a double precision floating point number (8 bytes). Only single dimension
arrays are supported (as opposed to 2D or higher dimension arrays). However, you can do your
own index mapping computations if higher dimensions are wanted (illustrated with ASTO and
ARCL commands above). Array elements begin with the index of one (not zero as in C). Thus the
first element of a 100 element array has an index of 1 and the last element has the index of 100.

Array Limits

Array sizes must be one or larger (arrays are heap allocated so large sizes are legal - be careful).
The maximum number of unique Adjustable & Static arrays for all user program files is 200.
The maximum number of Array Save and Load Commands for all user program files is 200.

Lifetime of the Array Variables

Adjustable array variables are initialized before any Initialize program segments are called. Their
array values are retained throughout the period of ion flying (while the Fly’m button is depressed).

Static array variables are initialized immediately before each ion (or group) begins to fly. Their
array values are retained only until the end of the ion’s (or group’s) flight (splar). They have the
same program segment access limits as described for normal static variables above.

Array Initialization Options

All array elements of each defined adjustable and static array are always initialized to zero at the
times described above. However, the user can also specify the name of an ASCII file containing
array initialization data to be automatically loaded after the array has been pre-zeroed. If there are
more values in the file than the defined array size, SIMION will only read the number of values
required to fill the array. If there are fewer values in the file than the defined array size, SIMION
will load the values provided starting with the first array element, and the remaining array elements
will remain zeroed.

The array initialization files are free format ASCIL. Numbers are separated by any number of
spaces and/or commas (commas are viewed as spaces). Blank lines are allowed, and the ¢;’
semicolon is recognized as the start of an inline comment (as in user programming). Individual
lines of initialization data must be less than 200 characters long.

Appendix | 1-19

User Programming

I The following is a legal though undesirable initialization file:

9 87 65 4 ;this is the first line
155.2

3.1415 2.0e-5

If there is illegal data in an array initialization file, SIMION will generate a runtime error help
screen giving the file’s name, the type of error, and its line number in the file.

Array Commands

The following is a summary list of the available array commands. The commands are described in
detail in the command summary above.

ADEFA Define Adjustable Array

ADEFS Define Static Array

ALOAD Load Array with data from an ASCII file

ARCL Recall an Array element into a stack register
ASAVE Save Array contents to an ASCII file

ASTO Store a number on the stack into an Array element

Temporary Variables

Whenever the compiler encounters a STO statement with a variable name that doesn’t match any
currently defined variable (of any type) it automatically creates a temporary variable for the value,
Temporary variables only retain their values during the execution of the program segment. When the
user program segment returns to SIMION all is forgotten.

Temporary variables must be defined via a STO statement before they can be accessed. Thus a RCL
from an undefined variable (assumed temporary) will result in a fatal compiler error.

Further, creating a temporary variable via a STO statement that is nof referenced later viaa RCL

statement will also result in fatal compiler error. This prevents a miss-spelled reserved variable STO
being made a temporary variable (a mistake) and thus introducing a hard-to-find program bug.

RESERVED VARIABLES AND THEIR FUNCTIONS

User programs communicate to SIMION through special reserved variables. These reserved variables
can be read (user programs can input them with a RCL statement) or written (user programs can
output to them with a STO statement). SIMION limits the read/write access to reserved variables by
program segment. This keeps you from exerting control at a bad time (however, you are free to control
things badly). A table of reserved variables appears below:

There are three unit systems used with reserved variables. The first is the currently aligned workbench
coordinates/orientation(Variables using these coordinates/orientations have names ending with _mm).
Variables using this unit system share the locations and orientations of the currently aligned
workbench coordinates (including Align button status).

The second unit system is the ion's current instance's PA volume coordinates/orientation (Variables
using these coordinates/orientations have names ending with _gu). This is a reversible 3D

1-20 Appendix |

User Programming

transformation from the current workbench unit system into the 3D grid unit system and orientation of

the ion’s current instance.

The third unit system is the ion’s current instance’s PA Array coordinates (Variables using these
coordinates have names ending with _Abs_gu). This is a non-reversible transformation from 3D PA
volume coordinates to the 2D or 3D coordinates of the actual potential array. For 3D arrays x, y, and z
are converted into their absolute values. For 2D planar x and y are converted to their absolute values
and z is set to zero. For 2D cylindrical x is converted to its absolute value, y and z are converted into r,
which is stored in y, and z is set to zero.

Variable Name

Use

Units

Read Access

Write Access

Ion_BfieldY_gu
Ion_BfieldZ gu

at Jon’s Location
(PA’s Orientation)

(PA’s Orientation)

Adj_Elect00 to Fast Adj Electrode’' Volts Fast_Adjust Fast_Adjust
Adj_Elect30 Voltages Init_P_Values Init_P_Values
Adj_Pole00 to Fast Adj Pole' Mags Fast_Adjust Fast_Adjust
Adj_Pole30 Mag Potentials Init_P_Values Init_P_Values
Ion_Ax_mm Ion’s current mm/micro sec? Accel_Adjust

Ton_Ay_mm Acceleration (WB Orientation) | Other_Actions | Accel_Adjust
Jon_ Az mm (WB Coordinates) Terminate

fon_BfieldX_gu Magnetic Field Gauss

Mfield_Adjust

Mfield_Adjust

Ion_BfieldX_mm

Magnetic Field

Gauss

Accel_Adjust

Ion_DvoltsX_gu
Ion_DvoltsY_gu
Ion_DvoltsZ_gu

at Jon’s Location
(PA’s Orientation)

(PA’s Orientation)

Ton_BfieldY_mm at Ton’s Location (WB Orientation) Other_Actions None

Ion_BfieldZ_mm (WB Orientation) Terminate

Ion_Charge lon’s current charge in units of Any Prog Seg Initialize

elementary charge | except Other_Actions

Init_P_Values

Ion_Color Color of Ion 0-15 Initialize Initialize
Other_Actions | Other_Actions

Voltage Gradient Volts/grid unit

Efield_Adjust

Efield _Adjust

Ion_DvoltsX_mm
Ion_DvoltsY_mm
Ion_DvoltsZ_mm

Voltage Gradient
at fon’s Location
(WB Orientation)

Volts/mm

(WB Orientation)

Mfield_Adjust
Accel_Adjust
Other_Actions
Terminate

None

Ton_Instance

Current Instance

1- max instance

Any Prog Seg
except
Init_P_Values

None

Ion_Mass

lon’s current mass

amu

Any Prog Seg
except
Init_P_Values

Initialize
Other_Actions

Ion_mm_Per_Grid_Unit

Min Current Scaling’

mm/grid unit

Any Prog Seg
except
Init_P_Values

None

Ion_Number

Ton’s Number

1- max ion

Any Prog Seg
except
Init_P_Values

None

Table continued on next page:

Appendix |

I-21

User Programming

Initialize and
Init_P_Values

Variable Name Use Units Read Access | Write Access
Ion_Px_Abs_gu Ion’s current PA grid units Any Prog Seg
Ion_Py_Abs_gu Array Coordinates (PA’s Abs except None
Ton_Pz_Abs_gu Coordinates) Init_P_Values
lon_Px_gu Ion’s current grid units Any Prog Seg
Ion_Py_gu (PA’s Coordinates) (PA’s Coordinates) | except None
Ton_Pz_gu Init_P_Values
Ion_Px_mm fon’s current mm Any Prog Seg Initialize
Ion_Py_mm Workbench (WB Coordinates) | except Other_Actions
Ion_Pz_mm Coordinates Init_P_Values
Jon_Splat Ton Status Flag’ Flying =0 Initialize Initialize
Not Flying =0 Other_Actions | Other_Actions
Ion_Time_of_Birth Ion’s Birth Time micro seconds Any Prog Seg Initialize
except Other_Actions
Init_ P_Values
Ton_Time_of_Flight Ion’s current TOF’ micro seconds Any Prog Seg Other_Actions
) except
Init_P_Values
Ion_Time_Step Ton’s Time Step’ micro seconds All but Tstep_Adjust

Electrostatic Pot

Efield_Adjust
Mfield Adjust

Ton_Volts at Ion’s Location Volts Accel_Adjust Efield_Adjust
Other_Actions
Terminate
Ion_Vx_mm Ton’s current mm/micro sec Any Prog Seg Initialize
Ion_Vy_mm Velocity (WB Orientation) except Other_Actions
fon_Vz_mm (WB Coordinates) Init_P_Values
Rerun_Flym Rerun Flym Flag’ NO =0 Initialize Initialize
YES =1 Other_Actions | Other_Actions
Terminate Terminate
Trajectory_Image_Control Controls Trajectory Value View Retain | Initialize Initialize
Image Viewing and 0 YES YES | Other_Actions | Other_Actions
Recording’ 1 YES NO | Terminate Terminate
2 NO YES
3 _NO NO
Retain_Changed_Potentials Controls restoring of | NO = 0 (default) | None Terminate
changed potentialsat | YES= 1
end of Fly’'m’
Update_PE_Surface New PE Surface’ YES =0 None Other_Actions
Notes on Reserved Variables
1 Adj_Elect00 and Adj_pole00 reserved variables support fast scaling capability of .PA0
fast adjust files.
2 The value in the Ion_mm_Per_Grid_Unit reserved variable is normally the scaling of

the ion’s current instance. However, if the ion is currently in both electrostatic and
magnetic potential array instances, the value stored is the smaller mm_per_grid_unit
scaling (e.g. for .25 and .30: .25 would be stored in variable).

1-22

Appendix |

User Programming

The Ton_Splat reserved variable has several possible SIMION generated values:

0 keep-on-trucking

-1 Hit electrode

-2 Dead-in-water (ion not moving and no forces on if)
-3 Outside workbench

-4 Ion killed (used in beam repulsion)

The Other_Actions segment can be used to monitor and change an ion’s fate.

The value stored in Ion_Time_of_Flight depends on the program segment called:

Initialize Start time of next step

Tstep_Adjust Start time of next step

Fast_Adjust Start time of current test time step (varies - Runge-Kutta)
Efield_Adjust Start time of current test time step (varies - Runge-Kutta)
Mfield_Adjust Start time of current test time step (varies - Runge-Kutta)
Accel_Adjust Start time of current test time step (varies - Runge-Kutta)
Other_Actions Stop time of current step (start time of following step)
Terminate Stop time of last step

The value stored in Ion_Time_Step depends on the program segment called:

Tstep_Adjust Full Time step for next step
Fast_Adjust Test time step (varies - Runge-Kutta)
Efield_Adjust Test time step (varies - Runge-Kutta)
Mfield_Adjust Test time step (varies - Runge-Kutta)
Accel_Adjust Test time step (varies - Runge-Kutta)
Other_Actions Time step of current step

Terminate Last time step tried

The Other_Actions segment can now read and write this variable. Setting this variable
to 1 stops ion trajectory recording and erases any currently saved trajectories. Setting the
variable to one (/) in a call to Other_Actions and then resetting it to Zero (0) on the next
call to Other_Actions erases any currently saved trajectories. Toggling (ON then Off)
this varialble in successive Other_Actions segments will not change data recording or the
re-flying of ions (use a Terminate segment to control re-flying).

The Trajectory_Image_Control variable can be used to control viewing and retaining of
ion trajectory images. It serves the same purpose as the V and R buttons (new 7.0
Jeatures) on the Normal Options screen. The least significant two bits are used to control
these two functions. The truth table above shows the legal values of the variable and the
results. SIMION always sets this variable according to the current V and R buttons’
status. Clicking either the V or R button during a Fly’m will immediately change this
variable back to the current values for BOTH the V and R buttons. Note: Changing the
variable’s values does change the V and/or R button’s status.

If Rerun is not active (e.g. Rerun button not depressed), the Trajectory_Image_Control
variable can be used to selectively retain portions of ion trajectories (in the trajectory
image file). Set bit O (Retaining bit) of this variable in an Other_Actions program
segment to suppress trajectory saving. This assumes the R button is depressed (retaining
by defaulr). 1f the R button is not depressed (not retaining by default), you would clear bit
0 of this variable to start trajectory image retention, and then set it to suppress as desired.

Bit 1 (Viewing bit) controls the viewing of trajectories. This bit can be set and cleared
under program control to select what portions of the trajectories are actually displayed
during the Fly’m itself. Its function is completely independent of either bit O (Retain bit)
or the status of the Rerun button.

Note: SIMION draws the current time step trajectory vector (2 point) immediately after
the Other_Actions program segment executes. Marks are actually drawn on the

Appendix | I-23

User Programming

following time step so you will have to keep saving trajectories one extra time step to get
the mark. '

by either the Init_P_Values program segment or the actions of the Update_PE_Surface
variable beyond the end of the current Fly’m. Normally SIMION restores any changed
potentials to their original values at the end of each Fly’m. Storing a non-zero value to
this variable in any Terminate segment will retain all potential changes to all active
arrays.

Storing a non-zero value in Update_PE_Surface (e.g. /) requests a PE surface update
(can only be called from Other_Actions segment). If there is a Fast_Adjust program

8 The Retain_Changed_Potentials variable is used to retain potential array changes caused

segment active and PE view mode is currently active, the Fast_Adjust program segment

will be called after Other_Action exits. The fast adjust potentials it returns will be used
to fast adjust the entire potential array and its PE surface will be redrawn. This is an
excellent way to make the PE surfaces undulate. See user program demos for
examples of how to use it effectively: _BUNCHER, _RFDEMO, _TRAP, and _TUNE.

Numerical Constants

Whenever the compiler encounters a number when it is looking for a command it will assume it is a

constant to be loaded into the x-register (via RCL constant). In order to save space, it keeps an array of

unique numerical constants. Multiple references to the same number will automatically be translated
into multiple references to the same numerical constant.

Compiler Limits

The debugging compiler outputs a compilation summary of the resources used. The following memory
limits apply to user programs:

Program memory is limited to 5,000 commands per user program file (e.g. .PRG file).

The maximum number of unique adjustable variables for all active user program files is 200.

The maximum number of unique static variables for all active user program files is 200.

The maximum number of unique Adjustable + Static arrays for all active user program files is 200.
The maximum number of unique Array Save + Load Cmds. for all active user program files is 200.
The maximum number of unique numerical constants per user program file is 200.

The maximum number of unique messages for per user program file is 100 (50 character).

The maximum number of unique temporary variables in a single user program segment is 200.
The maximum number of unique entry point labels in a single user program segment is 200.

WA W

Details of User Program Segments

User program segments (if defined) are called like subroutines from within SIMION. Figure I-1 below
contains a simple flow diagram of ion trajectory calculations. The diagram shows where user programs
are compiled, adjustable variables changed, static variables reset, and the various user program
segments called. Take the time now to carefully study the general flow of events. It is important that
you clearly understand where and when each user program segment is called if you expect to make
creative (or effective) use of user programming within SIMION.

Each user program segment is implemented as a monitor/modifier to the normal course of events.
That is, SIMION calculates the next time step to use for an ion or group of ions and then calls the
Tstep_Adjust program segment (if it exists). The Tstep_Adjust program segment can then monitor

124 Appendix |

User Programming

and perhaps change the proposed time step. This gives you complete freedom to monitor, modify, or
substitute your own values for important items like: Time step; electrostatic and magnetic fields;
accelerations; and even ion mass, charge, and etc.

Block Diagram of Trajectory Calculations and Where User Program Segments are Called

Compile All User Programs, RESET ADJUSTABLE VARIABLES and ARRAYS
and Let User ACCESS ADJUSTABLE VARIABLES]

<5->{ While Single Run Not Made or in Rerun Mode |
11
LCreate all lons - Then SEG INITIALIZE each Ioﬂ
——
| Before Flying any lons Call SEG INIT_P_VALUE

While lons Remain to be Flownl
IBefore Flying Next lon or Group - RESET STATIC VARIABLES AND ARRAYS|

[Select Next lon or Group and Start to Fly it]

{While S?lected lon or Group Stilf Flyingl

]Retermine Next Time Step to Use - Then SEG TSTEP_ADJUS‘I[
L

Single Time Step ICompute lon Repisions - If Active]
Integration Controller

T
[Find Electrostatic Instance (If Any) - Then SEG FAST_ADJUSﬂ

v
[SEG OTHER_ACTIONS] lEompute E Fields - Then SEG EFIELD_ADJUS II

[Compute E Acceleration - Then SEG_ACCEL_ADJUS?'

After ALL Tons Splat | Find Magnetic Instance (if Any) - Then SEG FAST_ADJUST |
Call SEG TERMINATE If Pg:féég’da‘e 7

S FAST ADJUST LCxompute M Fields - Then SEG MFIELD_ADJUS ii
Restore any SEG INIT_P_VALUES and/of [Compute M Acceleration - Then SEG ACCEL_ADJUﬁi
PE Updated Potentials

End of Fly'm| <———[Apply Relativistic Total Acceleration Corrections as Requirea

Figure I-1 Ion trajectory calculation block diagram showing when variables and arrays are reset and
where the various user program segments are called from.

The reserved variables Ion_Time_of_Flight and Ion_Time_Step take on different values depending on
what program segment they are referenced from. The Fast_Adjust, Efield_Adjust, Mfield_Adjust,
and Accel_Adjust program segments are called multiple times during a Runge-Kutta integration step.
The value of Yon_Time_of_Flight is the TOF in microseconds at the starf of the specific Runge-Kutta
term’s step. The Ion_Time_Step is the specific Runge-Kutta term’s time step. You can use these
values to get the desired TOF for your uses. For example, if you need the middle TOF of the term’s
time step load the Ion_Time_of Flight and add half the Ion_Time_Step to it. See the notes on
reserved variables above for more information.

The Initialize Program Segment

The Initialize program segment (if active) is called after each ion has been initialized for the next
Fly’m (or rerun). At this point you have the option of changing the following parameters:
Ion_Charge, Ion_Color, Ion_Mass, fon’s WB position, Ion_Splat, Jon_Time_of Birth, Ion’s
WB velocity, and Rerun_Flym. Initialize segment can output Message and R/S commands. It is
useful for supporting the rerunning of trajectories under program control (looping back from the
Terminate segment via the Rerun_Flym reserved variable). Use adjustable variables of
adjustable arrays to communicate between reruns. Access 1o static arrays and static variables is
not allowed as they have undefined values when the program segment is called.

Appendix I 1-25

User Programming

Defa Mass 100 ;Mass to use set by user and Terminate
Seg Initialize , beginning of segment

RCL lon_Vz_mm , recall starting velocity

RCL lon_Vy_mm

RCL lon_Vx_mm

>P3D ; convert to polar 3d

RCL lon_Mass ; recall initial mass

x><y >KE , getion’s ke

x><y RLUP RCL Mass STO lon_Mass ; substitute current mass

x><y >SPD x><y RLUP ; convert back to speed

>R3D ; get new velocity with same ke & new mass

STO lon_Vx_mm RLUP ; save new starting velocity

STO lon_Vy_mm RLUP

STO lon_Vz_mm

The Init_P_Values Program Segment

1-26

A program segment called Init_P_Values can initialize entire fast adjust potential arrays (e.g.
.PA0) before flying any ions. SIMION can also fast adjust a copy of the array points that neighbor
the ion’s current location (the exception is Update_PE_Surface) as the ion(s) fly via the
Fast_Adjust program segment (discussed below). However, if potentials won’t be changed
except between successive fly’ms in a series (e.g. auto-tuning), it is more efficient to change the
entire .PAQ array’s potentials once before the ions are flying to avoid the overhead caused by
successive calls to seg Fast_Adjust. The actual time savings will be a tradeoff between array size
and the number of ions flown. Small arrays with large numbers of ions will probably show the
biggest improvement.

The Init_P_Values program segment has been provided to do this. When SIMION starts a fly’m
or a rerun it first initializes ALL ions (calling Initialize segments as appropriate). It next calls all
the Init_P_Values segments defined in the all the active user program files (.PRGs files). Then
SIMION initializes static arrays and variables just before flying each ion or group.

Note: Unlike any other program segment, ions do not have to be in the instance to have the
Init_P_Values program segment called. This also means that ion and instance context have no
meaning within this program segment. SIMION will flag a compiler error if you try to access
any ion or instance related reserved variable. The only reserved variables that can be accessed are
Adj_Elect00 — Adj_FElect30 and Adj_Pole00 — Adj_Pole30. Moreover, use of an instance related
coordinate transformation (e.g. >ARR, >PAC, >PAO, >WBC, and >WBO) will flag a compiler
error. Access to static arrays and static variables is not allowed as they have undefined values
when the program segment is called (as with Initialize and Terminate).

SIMION normally restores any changed potentials to their pre Fly’m values at the end of the
Fly’m. However, you have the option of retaining these changed potentials with a reserved
variable called Retain_Changed_Potentials. If you save a non-zero value to this variable from
within any Terminate program segment SIMION will not restore the changed potentials. This
works for both the Init_P_Values program segment changes and for Update_PE_Surface induced
potential changes.

Defa Tune_Voltage 100 ;tuning voltage to use

Seg Init_P_Values ; beginning of segment
RCL Tune_Voltage
STO Adj_Elect01 ; store tune_voltage in fast adjust electrode one
Exit

Appendix |

User Programming

The Tstep_Adjust Program Segment

The Tstep_Adjust program segment is used to monitor/adjust the Ion_Time_Step (in micro
seconds) to use with the selected ion. Note: The time step is really a requested time step. Other
circumstances like other ions (grouped ion flying), delayed time-of-birth, binary boundary
approaches of the ion(s) can result in a shorter time step being used. However, if you write your
program segment to be persistent you can hit exact time-of-flight points. The example below
serves as an illustration:

Defa Start_Time 100 ,Starting time to use
Seg Tstep_Adjust , beginning of segment

RCL Start_Time
RCL lon_time_of_Flight

X>=Y EXIT , exit if fon will be at or beyond start time
RCL fon_Time_Step +
X<=Y EXIT , exit if time step less or equal to that needed

RCL Start_Time
RCL lon_time_of_Flight -
STO lon_Time_Step ; else shorten time step to what is just right

The Fast_Adjust Program Segment

The Fast_Adjust program segment is only legal with .PAO fast adjust potential arrays. This
program segment allows you to fast adjust and/or fast scale (via Adj_Elect00) the potentials of
adjustable electrodes or poles as the ion flies. This is very useful for all sorts of simulations.
Note: Only change via a Fast_Adjust program segment those electrode potentials you need
to change as the ions fly (faster and saves RAM).

In order to execute as fast as possible, SIMION only Ioads a copy of each needed fast adjust (or
Jast scale - .PA_) electrode solution PA file (because the Fast_Adjust program segment changes
their electrode’s/pole’s potential) into memory (e.g. .PA1). If your computer doesn't have enough
physical RAM (RAM needed = 8 bytes * array size * electrodes stored) virtual memory will be
used (as available). If not enough memory is available (real or virtual) SIMION will abort the
trajectory run (you may have to increase your virtual size). Once these files have been loaded
SIMION will try to avoid reloading them (potentially a slow process).

The example shows a simple Fast_Adjust program segment (Hint: Use Tstep_Adjust segment
above to create a precise turn-on time):

Defa Start_Time 100 ; Starting time to use

Defa AC_Voltage 500 , Voltage to use

Defa Omega 25 , angular frequency

Seg Fast_Adjust ; beginning of segment
0.0 STO voltage , assume zero volts

RCL fon_time_of_Flight
RCL Start_Time

X>Y goto done ; skip ac if start time > TOF
- RCL Omega * SIN ; sinfomega * (TOF - Start_Time))
RCL AC_Voltage * STO voltage , ac voltage to use
LBL done
RCL voltage
STO Adj_Elect01 ;adjust electrode number one

Appendix | 1-27

User Programming

The Efield_Adjust Program Segment

The Efield_Adjust program segment can be used to monitor and set the Ion_Volts,
Ion_Dvoltsx_gu, Ton_DvoltsY_gu, and Ion_DvoltsZ_gu electrostatic potential and fields. Note:
This user program segment can only be used with an electrostatic potential array. Even though
your potential array may be 2D, the potentials and fields supplied/required are the full 3D fields
produced by your array as projected as a 3D object in the workbench: The field gradients are in
volts per grid unit and are PA oriented (fo simplify your task). SIMION scales and orients these
fields into workbench coordinates after program segment exit.

Defa Start_Time , time to start field

Defa AC_Voltage 500 , voltage to use

Defa Omega 25 . angular frequency

Seg Efield_Adjust ; beginning of segment
RCL lon_Time_of_Flight ; test to see that field is on
RCL Start_Time ~
x>0 goto running ; jump to running if field is on
0 STO lon_Volts ; return zero field

STO lon_DvoltsX_gu
STO lon_DvoltsY_gu
STO lon_DvoltsZ_gu

EXIT
Ibl running
RCL Omega * SIN , sinfomega * (TOF - Start_Time))
RCL AC_Voltage * ; ac volfage to use
STO lon_DvoltsZ_gu ; set gradient in z
RCL lon_Pz _gu* , compute voltage
STO lon_Volts , save voltage
0 STO lon_DvoltsX_gu , set x and y field components to zero

STO lon_DvoltsY_gu

The Mfield_Adjust Program Segment

1-28

The Mfield_Adjust program segment can be used to monitor and set the lon_BfieldX_gu,
Ion_BfieldY_gu, and Ion_BfieldZ_gu magnetic fields (gauss). Note: This user program
segment can only be used with a magnetic potential array. Even though your potential array may
be 2D, the potentials and fields supplied/required are the full 3D fields produced by your array as
projected as a 3D object in the workbench. The field gradients are in gauss and are PA oriented (fo
simplify your task). SIMION orients these magnetic fields into workbench orientation after
program segment exit.

Defa Start Time ; time to start field

Defa Gauss 5000 ; magneltic field to use

Seg Mfield_Adjust ; beginning of segment
0 STO lon_BfieldX_gu ; assume field is off

STO lon_BfieldY_gu
STO ion_BfieldZ_gu

RCL lon_Time_of_Flight ; test to see that field is on
RCL Start_Time

x>y EXIT , field is off

RCL Gauss STO lon_BfieldZ_gu ; create field in z direction

Appendix |

User Programming

The Accel_Adjust Program Segment

The Accel_Adjust program segment can be called by electrostatic and/or magnetic potential array
instances. In either case, SIMION computes the electrostatic or magnetic accelerations (as
appropriate) and adds these components to the total ion’s acceleration and then calls the
appropriate Accel_Adjust program segment. The program segment can then input and modify the
ion’s total acceleration calculated at this point as appropriate.

From the flow diagram (above) note the order of the ion’s total acceleration calculation:
1. Ion Repulsion Accelerations (if any)
2. Electrostatic Accelerations(if any) added (E array’s seg Accel_Adjust called)
3. Magnetic Accelerations(if any) are added (M array’s seg Accel_Adjust called)

Note: Relativistic corrections are applied after the total non-relativistic acceleration has been
computed. Thus the acceleration seen by Accel_Adjust program segments is always non-
relativistic. However, the ion’s acceleration components as seen by the Other_Actions program
segment contain the relativistic corrections at the ion’s new location (after the time step has been
applied). See Appendix E for information on how relativistic corrections are performed.

Trick 1: To isolate the electrostatic acceleration in electrostatic PA's Accel_Adjust segment
when charge repulsion is active (total acceleration contains both at that time), create
an Efield_Adjust segment in the .PRG file that saves the acceleration components to
three static variables (total acceleration contains only ion repulsion accelerations at
that point). Now in the Accel_Adjust segment recall the current total acceleration and
subtract the ion repulsion acceleration from it (stored in the static variables). A similar
trick could be used to isolate magnetic components from the total acceleration in a
magnetic PA's user programs.

Trick 2: If you want to add viscosity effects using the integration stabilization below it should be
applied to the true total acceleration. The proper location for the Accel_Adjust
segment would be in the electrostatic PA's user program file if only electrostatic fields
are active or in the magnetic PA's user program file if magnetic fields are active (too or
only).

An Improved Accel_Adjust Segment for Viscosity

The problem with viscosity is that it has an exponential transient decay of acceleration. When
the damping term is very small (large time constant) the Runge-Kutta integration works just
tine. However, when the damping is high (small time constant) the Runge-Kutta integration
can overestimate the acceleration badly. SIMION's CV self protection (when quality > 0)
detects this problem and chops the time step. While the computation is salvaged in this
manner the time step can be so small that it may take 30 minutes or longer to fly a single ion.

The trick is to give the Runge-Kutta system what it really wants: An estimate of the average
acceleration within the test time step. Tt can be shown that the average acceleration can be
computed by multiplying the initial tota] acceleration including viscosity (at the beginning of
the test time step) by the following factor:

factor = (1 - e”(-tstep * damping))/(tstep * damping)

Appendix | 1-29

User Programming

The Other_Actions Program Segment

; This fixed Accel_Adjust program segment adds a Stokes’ Law Viscosity Effect
; It is an example of the external problem fix (in the honored NASA Hubble tradition)
; It also demonstrates the real power of SIMION's user programming

Define_Adjustable Viscous_Damping 0

Begin_Segment Accel_Adjust
Recall lon_Time_Step x=0 Exit

Exit

Recall Damping x=0 Exit
* Store nt

chs e™x 1 x><y -

Recall nt/ Store factor

Recall lon_Ax_mm
Recall lon_Vx_mm
Recall Viscous_Damping
Multiply

Subtract

Recall factor *

Store lon_Ax_mm

Recall lon_Ay_mm
Recall fon_Vy_mm
Recall Viscous_Damping
Multiply

Subtract

Recall factor *

Store lon_Ay_mm

Recall lon_Az_mm
Recall lon_Vz_mm
Recall Viscous_Damping
Multiply

Subtract

Recall factor *

Store lon_Az_mm

; adjustable variable Viscous_Damping

, start of accel_adjust program segment
, exit if zero time step

, exit if zero damping

; number of time constants in step
;(1-er-nt)

, divide by nt store as factor

; recall current x acceleration (mm/usec’)
, recall current x velocity (mm/sec)

, recall the viscous damping term

; multiply times x velocity

. and subtract from x acceleration

, multiply by exponential averaging factor
, return adjusted value to SIMION

; recall current y acceleration (mm/usec’)
, recall current y velocity (mmy/sec)

; recall the viscous damping term

. multiply times y velocity

, and subtract from y acceleration

, multiply by exponential averaging factor
, return adjusted value to SIMION

; recall current z acceleration (mm/usec’)
; recall current z velocity (mm/sec)

, recall the viscous damping term

, multiply times z velocity

, and subtract from z acceleration

; multiply by exponential averaging factor
, return adjusted value to SIMION

; exit to SIMION (optional statement)

1-30

The Other_Actions program segment (if active) is called after each ion’s time step. At this point
you have the option of changing the following parameters: Ion_Charge, Ion_Color, Ion_Mass,
Ion’s WB position, Ion_Splat, Ion_Time_of_Birth, and Ion’s WB velocity. This program is most
useful for changing ion parameters (e.g. mass or charge) during its flight.

The Other_Actions segment can also read and write the Rerun_Flym reserved variable. Setting
this variable to 1 stops ion trajectory recording and erases any currently saved trajectories. Setting
the variable to one (/) in a call to Other_Actions and then resetting it to Zero (0) on the next call to
Other_Actions erases any currently saved trajectories. Toggling (ON then Off) this variable in
Other_Actions segment will not change data recording or the re-flying of ions.

Appendix |

User Programming

Note: You can also perform binary boundary approaches (of all types) with Other_A ctions and
Tstep_Adjust segments working together. Each time the Other_Actions is called it could Iook
for a boundary. If the boundary was crossed (e. 8. velocity) it would restore ion’s parameters at the
end of last step (stored in static variables by Initialize and Other_Actions just before they exit)
and flag a halving of the time step to the Tstep_Adjust segment. Of course there would have to
be some minimum time step looping exit limit or the program would lock up.

; For use with Tstep_Adjust segment above to neutralize ions at Start_Time

Defa Start_Time 100 ; time to make change
Seg Other_Actions , beginning of segment
RCL Start_Time ; time to make change
RCL lon_Time_of_Flight , fon’s TOF
x!= 0 EXIT , exit if not at switch point
RCL lon_PZ_mm ; get ion’s position
RCL lon_PY_mm
RCL lon_PX_mm
RCL ion_Number , getion’s number

; output ion data at neutralization point
MESS ; lon # Neutralized at: x = #,y=#,z = #

BEEP , sound a beep too

1 8TO lon_Color , switch ion’s color to red
0 STO Ilon_Charge , heutralize ion

mark . mark event

The Terminate Program Segment

The Terminate program segment (if active) is called after all ions have stopped flying in the
current flying cycle. At this point you have the option of changing the Rerun_Flym reserved
variable. Setting this variable to 1 depresses the Rerun button and the ions are re-flown. Setting
Rerun_Flym to O turns off the Rerun button and the current Fly’m is terminated. Note: If the
Rerun_Flym variable is not changed, rerunning retains its current status (that of the Rerun
button). Note: Use Adjustable variables to communicate between reruns. Access to static
arrays and static variables is not allowed as they have undefined values when the program

segment is called.

Important: When the Rerun Button is depressed (by you or Rerun_Flym) ion trajectories are not
saved (remembered for redrawing). Trick: To save the trajectories in the last run clear the
Rerun_Flym variable with the Initialize segment at the start of the last run. Also: Data
recording to a file is blocked if and only if the Rerun button is depressed before the Fly’m bution
is clicked.

; For use with Initialize segment above as a looping demo

Defa Mass 100 ; Mass to use set by user and Terminate
Defa Del_Mass 1 ; delta mass between runs
Defa N_Runs 10 , humber of runs to make
Seg Terminate ; beginning of segment

RCL lon_Number

1X!=Y EXIT , exit if not fon number one

1 8TO Rerun_Flym ; set rerun by default

RCL Mass RCL Del_Mass + STO Mass , Mass += Del_Mass

RCL N_Runs 1- STON_Runs , dec n_runs by one

x>0 EXIT ; rerun if runs remain

0 STO Rerun_Flym ; terminate Fly'm after this run

Appendix | 1-31

User Programming

User Program Demos

There are several user program demonstration sub directories. The files in these subdirectories were
shipped compressed. To maximize compression of .PA files all non-electrode points were set to zero.
Thus you must load, refine and save specific arrays before you can execute the demos successfully.
The README.DOC files in each of these sub directories contain instructions on what to do. Note:
These demos merely demonstrate samples of simplified user programming. They are most likely not
the most appropriate algorithms for the task they demonstrate. That task is YOUR responsibility:

_BUNCHER: Ion bunching demo

_DRAG: Simple Stoke’s Law viscosity demo

_ICRCELL: Full 3D ICR Cell with external ion injection modeled

_QUAD: Quadrupole demo with 3D modeling of entrance and exit regions
_RANDOM: Random ion generator demo

_RFDEMO: Simple demos of various ways to generate RF effects

_TRAP: Ton Trap Demo with damping, ion repulsion, and undulating PE surfaces
_TUNE: Auto-focusing demo for a simple lens

Creating and Testing User Programs

User program files can be created with EDY (or your favorite editor) as a simple ASCII file. The
actual creation of a user program file is normally done outside SIMION. However, you can click the
GUI File Manager button on the Main Menu Screen and then click the Edit button in the file manager
to gain direct access to EDY from within SIMION. Remember that all user program files must have
the same name as their potential array and a PRG extension. Moreover, all user program files must
be in the same project directory as the potential arrays they support.

Running Another Editor From Within SIMION

The Debugger uses the EDY editor by default. If you prefer another editor, see Appendix H on the
EDY editor to see how to use environmental variables to access other editors from within
SIMION.

Testing User Programs with SIMION’s Debugger (Figure I-2)

Whenever SIMION loads a potential array it automatically compiles any associated user program
file. To test or debug the user program segments associated with a particular potential array, click
the potential array’s button within the active PA window on the Main Menu Screen. If the selected
potential array has a user program file the Test & Debug button will be unblocked. To test or
debug these user program segments click the Test & Debug button.

Note: There is also a way to access the debugger from within the View function. Click the PAs

tab, select the desired instance, and then click the Dbug button. Access to the Dbug button will be
blocked if the instance’s PA has no .PRG file or ions are currently flying.

Getting the Lay of the Land

The debugging compiler screen is composed of a collection of control objects above an activity
display screen (see Figure I-2 below). There are four groups of objects: Key code support,
compiler controls, file access, and debugging controls.

1-32 Appendix |

User Programming

Compi le’ File: EBUNCHER.grg; e _]é I pebuy: TSTEE ADJUST

= | show: Xref Listing EAEE T prg LTS :kRuniSegment i m
telilpoice ot Erox | R [Hoit ox saeh cnd] >1 For Profiling|
SINION 7.0\User Pfogrdm Compiljr :
Tue Jun\ 1 1§:46£17 1999
Exrors fRr: BUNCHER.prg Deb“g Seg!nent
L
Error Controlsl Must Compile to Trace and Sineis
Sufmary Unblock Debugger ing
0 Total Errors Step Controls
55 Lines Compiled
44 Commands Stored (5000 Max)
0 Array Varjiables Defined (200 Max)
0 Array File Save Loads Defined (2Q0 Max)
2 Adjustable Variables Defined (200\Max}
1 Static Variables Defined (200 Max)
3 Constants Defined (200 Max)
0 Messages Defined (100 Max)
Program Segments Defined [Generates Cross Reference Listing
TSTEP_ADJUST
FAST_ ADJUST
OTHER_ACTIONS
Key Code
Testexr .. .
Activity Display
. Screen
Compiler Summary
[Summary Scroll Buttorq
Figure I-2 SIMION’s User Program compile and debug facility
Key Code Support

Note: This feature is used to determine the key codes that KEY? and R/S commands put in
the x-register. The Key? button and the display object below it provide key code support. To
determine the key code of any keyboard key, click the Key? button and then press the desired
key (or key combination, e.g. <Ctrl A>). The key code will appear in the display object.

Compiler Controls

The next column of objects to the right contains the compiler controls. They are used to test
compile the current .PRG file. The compiler outputs to a .ERR file. This file is kept either if
there are errors or if the Show Xref Listing button is depressed.

The Compile button is used to start the test compiler. Note: You must test compile
successfully (no errors) before access to the debugger will be unblocked.

The Show Xref Listing button is used to generate a cross reference listing in the .ERR file.
This is useful to see how your user program was compiled. It also provides the code
addresses so you can locate problems in your source when run-time errors are Zenerated.

The last three objects are used for compilation error control. The panel object is used to set
the maximum number of errors allowed before test compilation aborts. Setting the value to
one aborts compilation on the first error. You can then correct the source file (Edit button)
and try again. The two remaining buttons are used to activate a pause at each error and the
compile to the next error options.

Appendix | I-33

User Programming

File Access

The the center column of objects contains three buttons that allow you to access specific files
with EDY. The Edit button accesses the current .PRG file. When you return from editing the
source file (PRG) SIMION assumes that you probably changed something, and
automatically blocks access to the debugger until you successfully test compile again.

The View button is used to edit the .ERR file. This file is only kept (stored) if there is an
error or the Show Xref Listing button was depressed during a test compile.

The Debug button is used to edit the .DBG debugger output file. Each time the debugger runs
it creates a .DBG file containing the debugger’s output.

Debugging Controls

The right column contains objects that are used for running the debugger. These controls are
blocked until a successful test compilation has been made. The selector object (on top)
allows you to select the program segment to debug.

The Run Segment button is used to run the debugger on the selected program segment. When
the debugger executes it compiles the selected segment; allows you to set the values of all
adjustable, static, and reserved variables used; and then runs the program segment.

The type of run is controlled by the remaining four control objects. The Runs panel object
accesses the run-time profiler if and only if more than one run is requested. This allows you
to determine how fast your user program segment executes. Be sure to use a large enough
number of runs to get a relatively accurate set of estimates. This feature is very useful if you
need to optimize the performance of a user program segment.

The Trace Program Execution button puts the debugger in trace mode. Each command that
executes produces a line of trace information containing the command, its address, function,
and the contents of the lowest four registers (x, y, z, and).

If the Halt on Each Cmd button is depressed the debugger will run in trace mode and halt
after each command is executed. Click the Xnext button to execute the next command. These
controls are useful for single step execution of a program segment.

Runtime Errors

The user program run-time system is designed to catch most execution errors (e.g. dividing by
zero). When a run-time error is detected (whether in the debugger or when flying ions) the run-
time system will halt the execution, display the type of error including the offending command’s
address, and abort any further execution of user program segments (e.g. abort the Fly’m). Use a
cross-reference listing to find the location of the error in your source.

Endless Loop Lockups

1-34

The user program run-time system is designed to allow you to exit an accidental endless loop
lockup. If you are flying ions just hit the Esc key and the loop will be exited and the Fly’m
aborted.

If you loop lock in the debugger you can also hit the Esc key. However, there is also a more
useful approach. Click on the Halt on Each Cmd button (YES, the mouse works in the debugger
even in a locked loop). The debugger will instantly switch to single step trace mode. Now click
the Xnext button to step through the execution and see just where and under what conditions the
program segment is loop locked. When you've found it, just hit the Esc key to stop the debugger.

Appendix |

