Computational Methods

‘Computational Methods

Introduction

This appendix describes the methods used for computations within SIMION 3D Version 7.0. The
discussion is somewhat generalized to avoid writing a tome on the subject.

SIMION 7.0 is an electrostatic and magnetic field modeling program. This means it is designed to
model the electrostatic and magnetic fields and forces created by a collection of shaped electrodes
given certain symmetry assumptions. Electrostatic and magnetic fields can be modeled as boundary
value problem solutions of an elliptical partial differential equation called the Laplace equation.

The specific method used within SIMION is a finite difference technique called over-relaxation. This
technique is applied to two or three dimensional potential arrays of points representing electrode (pole)
and non-electrode (non-pole) regions. The objective is to obtain a best estimate of the potentials for
those points within the array that depict non-electrode (ron-pole) regions.

Relaxation techniques use iteration, a technique of successive approximation. Relaxation has the
advantage that normal numerical computation errors are minimized, solutions are quite stable, and
computer memory storage requirements are minimized. However, its disadvantage is that the exact
number of iterations required for a given level of refining is quite variable and initially unknown for
each specific solution.

In the discussions below references will be made mostly to electrostatic arrays. These discussions
apply in the same manner to magneftic arrays unless otherwise noted.

The Structure of the Potential array

In SIMION, the potential array is a one dimensional array of double precision points (referencing
methods make it appear two or three dimensional to the user). Each array element represents a point
within the two (or three) dimensional array. Each array element typically stores two pieces of
information. The first is the current voltage at the point, and the second is whether or not the point is an
electrode. Electrode points are marked by adding two times the maximum allowable array voltage to
their actual voltage. SIMION has the ability to automatically re-scale a potential array with a larger
offset voltage if the maximum allowable array voltage is exceeded.

The array is considered packed when each point holds both voltage and electrode flag information.

Certain functions like refining operate faster if the electrode flag information is held in a separate array.
Each PA in RAM has its own separate buffer to support the unpacked potential array when needed.

The Relaxation Method

The relaxation method uses nearest neighbor points to obtain new estimates for each point. SIMION
uses the nearest four points for 2D (nearest six points for 3D). The example below demonstrates the
2D array (3D adds a point 6 above in z and a point 5 below in z for a total of six):

Appendix E E-1

Computational Methods

P1 Po Pz 2D Ponew - (P1+P2+p3+P4)/4
3D Ponew - (P1+P2+P3+P4+P5+P6)/6

The equations above (used to approximate Laplace Equation solutions) estimate the new value of a
point from the average value of its nearest four (or six - 3D) neighbors.

If each point within the potential array is estimated with this technique (excepr electrode points), we
have performed a single iteration. Each time we scan through the array again (another iteration)
changes made in previous iterations are propagated further throughout the potential array. Non-
electrode points change less and less between successive iterations. At some point, when these
changes are small enough, the potential array can be said to be refined close enough for some purpose.

Over-Relaxation

If the equation above is used for refining potential arrays, a large number of iterations will be required.
Over-relaxation speeds the refining process by increasing each voltage adjustment by some factor.
Let’s say that the new value of a point is computed to be 101 volts and its current value is 100 volts.
The required adjustment would be +1 volt for simple relaxation. Over-relaxation would change this
adjustment by multiplying it times a factor that ranges from 1 (relaxation) to 2 (unstable over-
relaxation). SIMION’s over-relaxation factor assumes the number one is added to it. Thus in
SIMION, an over-relaxation factor of 0.9 applied to a +1 volt change results in a correction of:

1.9volis=1*(1.0+0.9)

Dynamically Self-Adjusting Over-Relaxation

It turns out that for each different potential array there exists a unique over-relaxation factor that gives
the fastest solution convergence. These ideal factors are generally in the range of 0.9 but they are
different for each array. SIMION makes use of a dynamically self-adjusting factor to help avoid
looking for the ideal over-relaxation factor. A normal SIMION refine uses the following factors:

ITERATION OVER-RELAXATION FACTOR
1 0.40
2-10 0.67
>10 F = (Fgq * Hist) +
(1 - Hist) * (F ., - DF * Error)
Where: Fod = factor used in prior iteration
Hist = History factor (e.g. 0.70)
Frax = Max over-relaxation (e.g. 0.90)
DF = Fax - 0.40
and: Error =1/(1 + (DEL/(2*DELM)))
Where: DEL = Max prior abs single point change

DELM = Convergence Goal (e.g. 0.005)

The self-adjusting characteristics use the maximum single point absolute voltage change to drive the
factor. A maximum over-relaxation factor limits the maximum value, and a history factor limits the

E-2 Appendix E

Computational Methods

dynamic rate of change. As the array approaches convergence the over-relaxation factor is
automatically reduced to help smooth the final voltage estimates.

Planar 2D Symmetry Refining Equations

The voltage change estimates for planar 2D non-mirroring potential arrays are calculated as follows:

Interior points P = (P+Py+P+P,)/4
All corner points P, = (Po+P4)/2 {lower left corner}
All edge points P, = (P4+P,+P53)/3 {top edge}

The voltage estimate changes for x mirroring are as follows:

LL corner point Py
Left edge points Py

(P,+P,+P,)/3
(p2+P2+P3+P4)/4

The voltage estimate changes for y mirroring are as follows:
LL corner point P, = (P+P,+P,)/3
Bottom edge points P, = (P+P+P,+P)4
The voltage estimate changes for x & y mirroring are as follows:

LL corner point P, = (Po+P)2

Planar 3D Symmetry Refining Equations

Interior points P, = (P4+Po+P3+P+P+P()/6
All corner points P, = (Po+P4+Pg)/3 {LLL corner}
All edge plane points P, = (P4+P,+P,+P:+Pg)/5 {Bottom x2)
All edge line points P, = (Po+P4+Ps+P;)/4 {LL edge line}

The voltage estimate changes for the various X, y, and z mirroring follow from the 2D planar examples
above.

Cylindrical 2D Symmetry Refining Equations

Cylindrical 2D symmetry equations reflect the fact that each of the four nearest neighbor points do not
contribute equally to the best estimate of the central point. SIMION uses an effective area weighting
function. In this approach, each of the four neighbor points contribute as a function of the area of view
(considering cylindrical symmetry) it has with the central point.

Appendix E E-3

Computational Methods

Interior points P, = (P+P,+Pp+P,)/4
Lft/Rht edge pts P, = (Po+Pp+P,)/3 {Left edge points}
Interior axis pts P, = (P{+P,)/6 + 2*(P,)/3 {y =0}
Corner axis pts P, = (Po)/5 +4*(Py)/5 {LL Corner}
Upper corner pts P, = (2*y*Po+(2*y-1)*P3)/(4*y-1) {upr Ift}
Top edge points PO = (2*y*(P1+P2+P3) - P3)/(6*y-1)
Where: PA = P3 + F*(P4-P3)
F = 2+(1/y))/4
y = y position of center point in grid units

The voltage estimate changes for x mirroring follow from the 2D planar examples above.

Skipped Point Refining

SIMION 7.0 (6.0 too) employs a skipped point refining technique (developed by the author) that greatly
speeds up refining. With skipped point refining active, most arrays refine in times proportional to their
number of points (as opposed to n squared for normal finite difference techniques).

Skipped refining makes use of a rather direct approach that becomes very complex in practice. This
approach is to initially refine a smaller array by skipping points, estimate the values of intermediate
points (double the array density), and refine again. The process continues until no points are being
skipped (the final refine). The approach used is powers of two point skipping.

SIMION begins by looking at the size of the array to be refined. The maximum initial skipping is
limited by the smallest array dimension. SIMION wants at least 4 points as a minimum dimension in
the starting skip level. This means that square or cubic arrays produce the greatest initial skip factors
for their size (and usually faster refines).

Another benefit of skipped point refining is that SIMION automatically refines the initial and next skip
to orders of magnitude lower error than the user specification. This quickly finds and establishes the
linear gradient fields within the array (improving accuracy and greatly speeding refining). Thus there
is no need to preset linear gradients (a previous speed up trick) as in pre-6.0 versions of SIMION.

Unfortunately, the big problem is that of electrode visibility. When you are skipping points you are
most likely skipping electrode points here and there. If you blithely ignore this issue, the skipped point
refine solutions may be quite wrong. This error will persist until the skip length reduces to the point
that the troublesome electrode points are visible. Now the program has to propagate these newly
visible effects around the array. The invisible electrode point problem typically kills any speed
advantage simple minded skipped point refining has.

SIMION attacks this problem by scanning for and flagging any skipped electrodes at the beginning of
each level of skipped point refining. Now SIMION knows which points have one or more invisible
electrode points lurking near them and where they are. These special points are refined with a star
weighting function that converges properly on linear gradients (nature’s preferred gradient).

This approach combined with special compensations for irregular shifts in array boundaries as skipping

changes makes for a very complex refining system. However, it also turns out to be dramatically
Saster for large arrays than the previous SIMION methods .

E-4 Appendix E

Computational Methods

Array Doubling

The DOUBLE OPTION works in the following way: Dummy points are inserted between each
existing point. This means each initial square area of four points becomes a nine point square with the
original four points acting as the corner points of the new square.

The problem is what to do with the new dummy points? Are they to be electrodes or non-electrodes?
Points are typed in the following manner:

1. Scan alternate lines (y=0, y=2, and etc.) from left to right. The dummy point is converted
to an electrode if and only if the point to the left and right are both electrode points of the
same value, or else the dummy point is considered to be a non-electrode.

2. Scan each column (x=0, x=1, and etc.) from bottom to top looking at the odd line dummy
points (y=1, y=3, and etc.). The dummy point is converted to an electrode if and only if
the points below and above are both electrode points of the same value, or else the
dummy point is considered to be a non-electrode.

Note: If Interpolated Electrodes Mode is active and any new point has neighboring electrode points
of different values the new point will be an electrode of the average value of its neighboring electrode
points.

SIMION handles 3D arrays in an equivalent manner.

Note: New non-electrode points are always set to zero. The doubled array must be refined after
doubling to be usable.

Fast Voltage Adjustment Method

The fast voltage adjustment method used in SIMION makes use of the additive solution property of the
Laplace equation. This property allows separate solutions for each boundary (or collections of
boundary elements) to be combined in a simple scaling/additive process to obtain the potential at each
point in the potential array.

For example, if a potential array has five electrodes (e.g. 1, 2, 3, 4, and 5 volt points) we could create
and refine five potential arrays (one for each electrode). Each array would be the specific solution of
the Laplace equation for a particular electrode. In potential array number one, all electrode points
except those associated with electrode number one (e.g. one volt) would be set to zero volts. The
electrode points representing electrode number one would be set to the desired voltage for electrode
number one. When this array was refined it would represent the specific solution for the effects of
electrode one with the selected voltage.

The remaining four electrode potential arrays are created in a similar fashion. The composite potential
would be computed as follows:

Composite potential:

P, = Phy +Pro+ P+ Py + Py
Where:

n = Any common array location

Py = Electrode one’s solution array

Appendix E E-5

Computational Methods

SIMION includes an additional potential array, the base array, to support the fast adjustment process.
This array initially only contains the solutions for any electrode points that do not have their own

individual potential arrays. If all electrode points are associated with a particular individual
solution potential array then all the points of the base array are initially at zero volts.

However, any non-fast adjustable electrodes have non-zero potentials (e.g. 835 v) SIMION 7.0 will
refine an additional array .PA_ containing only their solutions. This array is then available for fast
proportional potential scaling of these points.

Fast adjustment works by using each reference electrode potential file and a scaling factor to change the
non-electrode point voltages in the base potential array:

Voltage Adjustment:
View = Voig + F ™ Vit
Where:
View = Adjusted point voltage - base array
Vo = Current point voltage - base array
Vet = Current point voltage - Elect array
= Veneu/Ve e - Vegg/Ve
Ve, ow = New electrode voltage
Ve, = Current electrode voltage
Ve, = Reference electrode array voltage

The voltage adjustment is accomplished by loading portions of a reference electrode array and using the
portion’s points to adjust the equivalent points in the base potential array. During this process all -
electrode points of the specific electrode are changed to their new value. This process continues one
electrode file at a time until the required adjustments have been made.

Trajectory Algorithms

Ion trajectory calculations are a result of three interdependent computations. First, electrostatic,
magnetic, and charge repulsion (if active) forces must be calculated based on the current position and
velocity of the ion(s). These forces are then used to compute the current ion acceleration and used by
numerical integration techniques to predict the position and velocity of the ion at the next time step.
Moreover, the time step itself must be continuously adjusted to maximize trajectory accuracy while
minimizing the number of integration steps per trajectory.

Instance Selection Rules

Unlike previous versions, SIMION 7.0 (6.0 foo) can have up to 200 potential array instances in its
workspace at one time (instead of just one), and it must decide which instance to apply at each
trajectory calculation point. This problem is solved by keeping instances in an ordered list. SIMION
searches down this list from the last instance on the list (highest priority) toward the first (instance I -
lowest priority). SIMION will always use the first electrostatic (and magnetic if defined) instance(s) it
encounters while search down the instance list that contains ion to compute the forces on the ion.

E-6 Appendix E

Computational Methods

SIMION’s Unit System

SIMION uses the following internal unit system:

Time = microseconds
L.ength = mm
Position = mm
Velocity = mm/ microsecond

mm/ microsecond?
volts/ mm

Acceleration
Elect Gradient

Electrostatic Force Computation

Electrostatic forces are initially computed in terms of volts per grid unit. As the ion progresses through
the potential array it moves from within one square of grid points into another. SIMION automatically
generates a small 16 point array that represents the current four point grid and the 12 grid points around
it (64 points for 3D arrays) . If the ion happens to be in a boundary grid location SIMION estimates the
potential of any grid point that falls outside the current potential array. The values of these grid points
are determined by symmetry assumptions and grid point location.

Py
Py Pion Pa One half grid unit separations
P;

Voltage gradients are calculated by first estimating the potentials at four points (six points for 3D) as
pictured above. These points are exactly 0.5 grid units from the current ion position.

The potential at each point is normally calculated via linear interpolation using the four grid points
bounding the grid square it falls in (8 point cube for 3D). However, electrode boundaries present a
problem.

If one of the four points (6 points 3D) has an electrode boundary between it and the ion position,
SIMION adjusts its calculations. In this case the value of the point in question is calculated by
assuming a straight line extrapolation using the boundaries of the ion’s grid square (assuming
continuation of the current gradients). This correction improves SIMION’s ability to model fields
near electrodes and ideal grids.

Appendix E E-7

Computational Methods

Electrostatic Forces:

Planar 2D
Fy = V, -V, {sign corrected}
F, = V;-V, {sign corrected}
F, = 0
Planar 3D
F, = V, -V, {sign corrected}
Fy = V3-V, {sign corrected}
F, = Vg - Vg {sign corrected}
Cylindrical 2D
F, = V,-V, {sign corrected}
F, = V;-V, {sign corrected}
F, = F.* yIr {sign corrected}
F, = F.* 2/t {sign corrected}
Where:
Vi, potential (in volts) at P,

.,
I

sqart(y*y + 2*z)

Electrostatic Acceleration:
Now Transform E Forces into workbench orientation
(Forces initially calculated in PA orientation)

A, = F, /(1.03642722x102 * M * S)
A, = F, /(1.03642722x102 * M * S)
A, = F,/(1.03642722x102* M * S)
Where:
M = lon’s rest mass (amu) / unit charge
S = Scale in millimeters/grid unit

Electrostatic Forces Outside Instances

When an ion is outside all electrostatic instances SIMION looks both directions along its current
trajectory path for the closest electrostatic instance of intersection in both directions. If the current
trajectory intersects electrostatic instances in both directions, SIMION will determine the potentials at
the points of intersection and estimate the resulting electrostatic acceleration (if any) assuming a linear
gradient. Note: Charge repulsion calculations are not effected by the ion’s instance (or non-
instance) status. Warning: User Programs cannot change the potentials the ion sees, because the ion
is not in any potential array’s instance.

Magnetic Force Computation

Magnetic forces are calculated (if magnetic instances are defined) by searching the list of instances to
see if the ion is presently within a magnetic instance (searching last to first in instance list).

E-8 Appendix E

Computational Methods

Magnetic Forces:

Planar 2D

B, = ng * (P, - P,) {sign corrected}

By = ng * (P3-P,) {sign corrected}

B, = 0
Planar 3D

B, = ng * (P, - P,) {sign corrected}

By = ng * (P;-P,) {sign corrected}

B, = ng * (P5 - Pg) {sign corrected}
Cylindrical 2D

B, = ng * (P, - P,) {sign corrected}

B, = ng * (P;-P,) {sign corrected}

By = F.*y/r {sign corrected}

B, = F,*2lr {sign corrected}

Where:
ng = user adj magnetic scale factor
P, = potential (in Mags) at P,
r = sqri(y*y + z*2)
Magnetic Acceleration:
Now Transform B field into workbench orientation
(Forces initially calculated in PA orientation)

A, = c* (VyBZ -V,B) /M

A, = C*(V,B,-V,B,)/ M

A, = c* (V;B,-V,B)) /M

Where:
c = 9.648453082x103
Vy = lon’s velocity in workbench axis direction
M = lon’s rest mass (amu) / unit charge

Charge Repulsion Forces

SIMION supports three estimates of charge repulsion: Beam, coulombic, and factor. The basic
approach is to let a few ions represent many. In general, charge repulsion estimations involve
determining the forces between the current ion in question and all other currently flying ions. These
forces are then scaled by a charge scaling factor and accelerations are obtained due to each interaction.
The sum of the accelerations represent the estimate of charge repulsion effects on the current ion.

Beam Repulsion

Beam repulsion is estimated via line charge assumptions. Each ion is assumed to represent a line
charge. The line charge density coulombs/mm is determined by apportioning the beam current between
the ions according to their charge adjusted by their charge weighting factor and dividing it by the ion’s
velocity:

Appendix E E-9

Computational Methods

coulombs /mm = (coulombs/usec) / (mm / usec)

Beam repulsion requires that all ions be flown via space coherent integration. This is accomplished by
using ion number one as leader of the pack. At each time step for ion number one a plane containing
the ion and normal to its velocity is computed. This plane is then used to control the time steps of all
other ions so that they will fall within the plane too. The following calculates the charge repulsion
between two representative weighted ions.

Beam Repulsion Acceleration:

re = t/rayvgmin
rfactor = reZ /{(0.341995 + re3) Yavgmin)
scale = -1.73433341x10+9 * Amps * chg /(m * total_chg)
accel =

scale * tchg * tewf * rfactor / tv

Acceleration components computed using unit vector for r between the two ions

Where:
amps = total beam amps
chg = charge on current ion (real charge)
m = rest mass of current ion (amu)
total_charge = sum of all ion’s cwf * their absolute charge
tchg = test ion’s charge (real charge)
tewf = test ion’s charge weighting factor
r = distance between the two ions
avgmin = current average min distance between ions
tv = speed of the test ion

Coulombic Repulsion

Coulombic repulsion is estimated via point charge assumptions. Each ion is assumed to represent a
point charge. The total coulombs of charge is apportioned between the ions according to their charge
adjusted by their charge weighting factor. Coulombic repulsion requires that all ions be flown in time
coherent integration.

Coulombic Repulsion Acceleration:

re = t/raygmin
scale = -8.67166704x10+14 * 8 * chg /(m * total_chg)
accel = scale * tchg * tewf * rfactor

E-10 Appendix E

Computational Methods

Acceleration components computed using unit vector for r between the two ions

Where:

C

chg

m
total_chg
tchg

tewf

r

Favgmin

Factor Repulsion

total coulombs of charge

charge on current ion (real charge)

rest mass of current ion (amu)

sum of all ion’s cwf * their absolute charge
test ion’s charge (real charge)

test ion’s charge weighting factor

distance between the two ions

current average min distance between ions

Factor repulsion is estimated via point charge assumptions. Each ion is assumed to represent a point
charge. Each point’s effective charge is determined by multiplying its charge by the charge
multiplication factor adjusted by its charge weighting factor. Factor repulsion requires that all ions be

flown in time coherent integration.

Factor Repulsion Acceleration:

re
rfactor
scale
accel

favgmin

refl? (1.0 + re?) * rayamin)
-1.389354835x10"4 * l'-9 * chg /(m * avg_cwf)
scale * tchg * tewf * rfactor

Acceleration components computed using unit vector for r between the two ions

Where:
F

chg

m
avg_cwf
tchg
tewf

r

Favgmin

Corrections for lon Clouds

charge multiplication factor

charge on current ion (real charge)

rest mass of current ion (amu)

average all ion’s charge weighting factors
test ion’s charge (real charge)

test ion’s charge weighting factor

distance between the two ions

current average min distance between ions

In each of the three repulsion types above, each ion is actually representing a cloud of jons. If for some
reason an ion found itself in the middle of the cloud of another ion it should have no forces on it.
However, if the standard 1/12 (Factor and Coulombic repulsion) or 1/r (Beam repulsion) distances were
to apply then forces would be infinite and everything would blow up.

SIMION compensates for this problem by using radius factors (rfactor above) that are 1/r2 or 1/r if is
large and diminish to zero as r approaches zero. The method used closely models the effect of having

Appendix E E-11

Computational Methods

the ion near a cloud of ions (spherical - Coulombic and Factor, or cylindrical - Beam) with an effective
radius of Tminavg:

The value of minavg is set to the average minimum distance between all currently flying ions.
SIMION updates this value each time step. Thus the effective radius of the ion clouds change as the
ions move about. The single exception is when Factor repulsion is set to 1.0. Then SIMION always
uses 3.0e-11 mm (10 times the classical electron radius) for the effective cloud diameter.

Relativistic Corrections

The forces due to electrostatic fields, magnetic fields, and any active charge repulsion are combined to
obtain the X, y, and z acceleration components assuming the ion’s rest mass. At this point if the ratio of
the ion’s v’ (speed squared) divided by ¢’ (velocity of light squared) is greater than 10 ™, the following
relativistic corrections are applied:

Relativity Correction Factor:
rcf = sqrt(1 - v’/c?)
Convert each acceleration component (a,, a,, and a,) to its tangential and normal

components relative to the ion’s current velocity vector (e.g. a, into a, and a_) and apply
the following relativistic acceleration correction:

- 3 *
a, = ref" *a, +ref*a,
a, = rcf: *a, +rcf*a,
— * *
a, = recf *a, +rcf*a,

Numerical Integration Method

A standard fourth order Runge-Kutta method is used for numerical integration of the ion’s trajectory in
three dimensions. This approach has the advantage of good accuracy and the ability to use
continuously adjustable time steps. This, to some extent, compensates for the added time required to
calculate accelerations at four points for each time step.

Adjustable Time Steps

A good self-adjusting time step method is just as important as the interpolation and integration
methods. Each depends on the other if reasonably accurate trajectories are to be calculated in a
minimum of computer time.

Large time steps work well in regions of the potential array where voltage gradients are highly linear
and have a minor impact the ion’s rate of change in kinetic energy. However in other areas it is very
critical to have a small time step to maintain accuracy in high gradient areas. If the time step is
significantly too long an ion can overshoot its energy null point (e.g. reflector fields) and gain
enough false kinetic energy to gradually make the subsequent trajectory meaningless.

E-12 Appendix E

Computational Methods

SIMION utilizes a two step process to estimate an appropriate time step for each integration step.
Before entering the first step of Runge-Kutta integration, the total velocity and acceleration terms are
calculated at the current ion location.

The user has previously entered a value for the largest distance step permitted. The default (and
maximumy) value for this distance step is one integration step per grid unit of length.

This distance step is used with the current ion velocity to estimate the time step assuming zero
acceleration. Likewise the distance step is used with the current ion acceleration to estimate the time
step assuming zero initial velocity. The composite estimate is obtained by using a parallel effect
assumption (to avoid iterative solution techniques).

Longest time step computation:

t, d/v
t, = sqri(2 *d /a)

tstep = t,*t, /@, +t) {al=0, v!=0}

tstep = t, {a=0}

step = ty {v=0}
Where:

d = Maximum distance step
' = current ion velocity
a = current ion acceleration

Notice that tsrep is calculated three ways depending on the presence of velocity and acceleration.

If both acceleration and velocity are present a second computation is performed to see if the time step
should be shortened. A quantity called stop length is computed. Although it seldom indicates the
actual ion’s stopping distance (e.g. magnetic accelerations) it is a very good indicator of the rate of
trajectory curvature. The stop length if shorter than 10 grid units is used to compute a reduced time
step.

Reduced time step:

Sgist = v*v/(2*a)
If Sgist > 10 tstep =lstep .
f1< Sdist <10 tstep =tstep Sdist/ 10
I Sgist < 1 tstep =lste,

Thus the normal time step can be as much as 10 times shorter if the ion is in a region of high trajectory
curvature. This method appears to be quite successful in maintaining accuracy while minimizing total
integration steps.

Edge Detection and Boundary Approach

Two other problems must also be considered. First, SIMION' trajectory algorithms are quite blind.
They can serenely propel an ion right over a sharp gradient edge (electrostatic or magnetic) and detect
it only after the fact. This can create all sorts of problems with energy conservation and thus
compromise the accuracy of ion trajectories. Second, once a boundary (of whatever type) has been
detected (by whatever method) how do you efficiently approach it (being basically blind).

Appendix E E-13

Computational Methods

Binary Boundary Approaches

SIMION 7.0 makes use of a binary approach method. SIMION looks ahead one time step to see if a
boundary has been crossed. If so, the integration time step is cut in half and the integration calculation
step is repeated. This process continues until the boundary is no longer crossed. At the next integration
calculation SIMION remembers that a boundary exists and starts off with the last successful time step
and halves it as necessary to avoid the boundary. Of course this cannot continue indefinitely because
the boundary would never be crossed. SIMION limits the smallest time step to 0.0001 of the stop
length corrected time step. When this limit is reached the boundary is crossed whatever the eventuality.

SIMION’s boundary detection involves the tentative calculation of the next ion position. If any of the

four Runge-Kutta terms blow up (hits an electrode or is outside of grid) a warning flag is set and if the
time step is above the lower limit the time step is halved and the process loops.

Field Curvature Detection

The next boundary test is the gradient of acceleration. The coefficient of variation squared is calculated
for the four Runge-Kutta Ax, Ay, and Az acceleration terms. If the C,, for any acceleration term is
above 1/(accuracy level) (typically 1/2 or 0.5) the binary approach is used until all values are less than
the upper limit or the minimum time step size has been reached.

Likewise, when the C, is less than 1/2 its upper limit, SIMION doubles the time step a step at-a-time
until the stop length time is reached or a higher C, forces another time step reduction. This reduces
errors on sharp edges (grids and magnet boundaries) and in higher field curvature areas.

SIMION has additional looping triggers for electrodes, grid boundaries, velocity reversals, and other

events. Together these algorithms provide SIMION with accuracy improvements while minimizing the
number of integration steps.

How Trajectory Quality is Controlled

SIMION uses a Trajectory Computational Quality panel (Normal Controls Screen - accessed via the
Normal ¢ab) to control how trajectories are calculated. The default value for this parameter is 3.

Quality < Zero -

Provides control of relative time steps. The step distance is set to 1/(1 + abs(quality)) of the
normal stop length time step. C,, boundary, and reversal checking are turned off.

Quality set to Zero

This provides the fastest calculations at the expense of accuracy. Time steps are adjusted to move
the ion the normal stop length time step (typically one grid unit). C,, boundary, and reversal
checking are turned off.

Quality > Zero and < 100

Time steps are adjusted to move the ion the normal stop length time step (typically one grid unit).
CV, boundary, and reversal checking are turned on. C, limits are based on 1.0/quality.

E-14 Appendix E

Computational Methods

Quality > 100

Provides control of relative time steps too. The step distance is set to 1/(1 + abs(quality -100)) of
the normal stop length time step. C,, boundary, and reversal checking are turned on. C, limits
are based on 1.0/quality.

Pseudo-Random Number Generation

Pseudo-random numbers are made available to user programs (Appendix I) via the RAND and SEED
user program functions. SIMION 7.0 contains a new pseudo-random number generator, because

Dr. Richard Morrison of Monash University, Australia discovered some fine structure striations
(patterns) in the random numbers when used in combination with certain trigonometric functions (this
pseudo-random generator has been in use from versions 4.0 - 6.0).

The new pseudo-random number generator is one the author had devised for other uses. It is a pseudo-
random walk generator with a repeat length of greater than 256! Real numbers are created by direct
substitution of random bytes from the core generator into a preset IEEE double 64 bit core to create all
mantissa values from 0.0 to 1.0. Unfortunately this generator is somewhat slower, but it tests with the
best random generators known and has a longer repeat length.

The random number generator makes use of a randomized 65k byte table which is automatically
created each time the SIMION initializes. Each created randomized table produces an entirely different
sequence of pseudo-random numbers of almost infinite repeat length. A copy of this random table is
saved as:

C:A\FILES.GUNNITIAL.TBL

If you want SIMION to reuse a random table definition instead of automatically recreating a different
one each time the program starts copy the initial.tbl file to the following file:

CAFILES.GUNACTIVE.TBL

SIMION will now always load this file as its initial.tbl at startup. To stop this feature delete the
active.tbl file, and SIMION will automatically create a new table at each program startup.

The SEED user program function now works in the following manner: A value of 0.0 restores the
generator to the initial random table values created or loaded at program startup. Any other number
will be used to create a deterministically re-randomized working table starting with the initial random
table settings (takes some time). Thus a seed value other than zero will create an entirely new random
number sequence (more than 256! are possible — as opposed to accessible — because of the small 64 bit
seed used).

Note: SIMION periodically makes pseudo-random number generator calls from within several of its
GUI service loops (e.g. Main Menu screen and View function only when the Fly’m button is NOT
depressed) to further randomize the numbers. To obtain repeatable sequences of random numbers from
one fly’m to another, use a SEED function call in an initialize user program segment to force the same
starting point (a seed of 0.0 is recommended - fast).

Appendix E E-15

Computational Methods

E-16 Appendix E

