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Abstract

The formation of biexcitons in conjugated polymers is examined within the Pariser-Parr-Pople

(PPP) model of polyacetylene. The calculations are done using a scattering formalism that provides

a size-consistent description of excited states containing both single and double electron-hole pair

excitations. The excited-state absorption spectrum from the 11Bu exciton state was calculated

and examined for signatures of biexciton formation. Calculations were performed on polyenes with

up to 9 unit cells, and on long chains using periodic boundary conditions. While polyenes with

7 to 31 unit cells exhibit states with some of the features expected for biexcitons, such states are

not seen in the limit of long chains. This suggests that, within the two-band model considered

here, exciton-exciton interactions are not of suÆcient strength to lead to biexciton formation in

the limit of long chains, and that their presence in shorter chains is due to con�nement e�ects. In

the long-chain limit, transitions are found to states consisting of overlapping electron-hole pairs,

but these states have energies above that required to make two free excitons. These states may

result from scattering resonances between excitons.
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I. INTRODUCTION

The photophysical and semiconducting properties of conjugated polymers enable the

construction of devices such as light-emitting diodes1{4 and solid-state lasers.5{9 But despite

this functional similarity between organic and inorganic semiconductors, there are some

signi�cant di�erences in the details of the photophysics. Of particular interest here is the

e�ective strength of Coulomb interactions between an electron and hole. Such interactions

can lead to the formation of bound electron-hole pair states, or excitons. In conjugated

polymers, estimates of the exciton binding energy range from 0.2 and 0.9 eV10{16 which is

much larger than the 10's of meV seen in inorganic semiconductors. So, unlike inorganic

semiconductors, excitons play an important role in the room temperature photophysics of

conjugated polymers. For instance, the 11Bu state of conjugated polymers is the lowest

energy exciton state, and this state carries most of the one photon intensity out of the

electronic ground state. Here, we examine the nature of the interaction between excitons

and, in particular, whether such interactions can lead to binding between two excitons to

form a biexciton state. These interactions may be especially important in applications that

rely on high exciton densities such as solid-state lasers.5{9

Coherent many-particle states, such as biexciton states, are known to exist in inorganic

semiconductors.17 Although biexciton states have been observed in molecular aggregates18

and charge transfer crystals,19 their existence in other organic semiconductors remains un-

certain. Several researchers have invoked biexcitons to account for features in the time

resolved spectra of PPV oligomers20{24. However, a direct spectral transition to a biexciton

state has yet to be observed. The photoinduced absorption spectrum of PPV does have a

prominent feature at relatively high photon energy (1.4 eV), but assignment of this feature to

biexcitons has been ruled out based on the unphysically large biexciton binding energy that

would result from such an assignment10,25,26. Calculations performed on oligomers10,25,27{39

suggest that biexcitons can exist in conjugated polymer chains. Since such calculations are

diÆcult to perform on long polymer chains, results from oligomers are typically extrapolated

to the long chain limit. While extrapolation typically yields an accurate depiction of the

in�nite chain for low lying excitations, this procedure can be problematic for high energy

excitations.40

Because of chain length limitations and issues with size consistency,32 our goal was to
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develop a size-consistent technique that could be applied to long polymer chains in order

to study high energy exciton-exciton interactions, including spectral signatures of biexci-

tons. This is accomplished by using the scattering formalism described in Section II. The

Pariser-Parr-Pople (PPP) model of polyacetylene is used as a simple two-band model that

captures the essentials of conjugated polymers. A Frenkel exciton model41{44 is used as a

benchmark for comparison, since the characterization of the biexciton within this model

is fairly straightforward. Section III presents results obtained for oligomers, and for long

chains with periodic boundary conditions. The excited-state absorption spectrum from the

11Bu exciton state is calculated and examined for signatures of biexciton formation. No such

signatures are found in the long-chain limit of the PPP model. The results are summarized

in Section IV.

II. FORMALISM

Much of the formalism used here was originally developed for nonresonant nonlinear

optics, and a detailed justi�cation of the approach and demonstration of its size consistency

is given in Ref. 45. Here, we brie
y describe the method and provide details on its application

to the calculation of excited-state absorption spectra.

A. Hamiltonian

The calculations are performed on the Pariser-Parr-Pople (PPP)46,47 model of polyacety-

lene. The molecular geometry is �xed, which prevents formation of solitons and makes this

a simple two-band model that captures the salient features of conjugated polymers.

The PPP Hamiltonian models the �-electron system48 by including one p orbital per

carbon and assuming zero-di�erential overlap between these orbitals. The Hamiltonian can

be written,

Ĥ =
X
i

2
4�I�X

j 6=i

�i;j

3
5 n̂i + X

i;j;�

�i;j a
y

i;�aj;�
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where a
y

i;� and ai;� are the creation and destruction operators for an electron with spin

� on the ith carbon atom, �i;j is the one-electron matrix element between electrons on

carbons i and j, and ni =
P

� a
y

i;�ai;� is the number operator for electrons on carbon i. The

calculations presented in this paper were performed on polyacetylene, with carbon-carbon

double and single bond lengths of 1.35 and 1.46 �A, and bond angles of 120Æ. One electron

matrix elements are included between bonded carbon atoms, with �1 =-2.5809 eV for double

bonds and �2 =-2.2278 eV for single bonds. The Coulomb energy is calculated using the

Ohno parameterization,49

�i;j =
14:397 eV

o

As �
14:397 eV

o

A
U

�2
+ r2i;j

; (2)

where ri;j is the distance between the ith and jth orbitals and the Hubbard parameter U is

11.13 eV, the di�erence between the ionization potential and electron aÆnity in carbon.

The Hartree-Fock band structure and Wannier functions are obtained as described in

Ref. 45. The Hartree-Fock solution yields one valence and one conduction band, and their

corresponding Wannier functions.

B. Equation-of-Motion Method

The excited states contain electron-hole pairs created by promoting electrons from the

valence to the conduction band. In Con�guration Interaction (CI) theory, the excited states

are written as linear combinations of various electron-hole con�gurations and the linear

expansion coeÆcients are determined variationally. Size consistency is necessary for the

energy to scale correctly with chain-length in the limit of a long chain. When only single

electron-hole excitations are included (S-CI theory), the energy is size consistent. However,

inclusion of double electron-hole pair excitations (SD-CI) leads to size inconsistencies that

prevent proper convergence to a long-chain limit. To overcome this issue, we use an equation-

of-motion (EOM) formalism, which has previously been shown to be size consistent.45,50 This

method di�ers from CI theory in that it constrains the ground state to remain the Hartree-

Fock ground state. The excited electronic states can then be written,

j excited state i = 
y jHFi ; (3)
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where jHFi is the Hartree-Fock ground state, and 
y is a linear combination of electron-hole

pair creation operators. In the EOM method, the excitation operator 
y describes only the

di�erence between the ground and excited states, i.e. it is used only to create electron-hole

pairs in the excited state.

In CI theory, the excitations are also used to describe electron-correlation in the ground

electronic state, and it is this attempt to include ground-state correlation that leads to

size inconsistencies. Due to Brillioun's theorem, whereby singles do not interact with the

Hartree-Fock ground state, EOM and CI theory are equivalent at the singles level. The

di�erences arise at the doubles level, and SD-EOM is useful since it provides a size-consistent

description of excited states containing both single and double electron-hole pairs.

C. Periodic Boundary Conditions

We used periodic boundary conditions in order to study the limit of a long polymer chain.

Due to the resulting translational symmetry, the excited electronic states may be written,

j excited state i =
1
p
N

NX
n=1

ei(
2�

N
)K n 
(K)y

n
jHFi ; (4)

where the sum is over all N unit cells and K is the wave vector that describes the crystal

momentum for the motion of the \center of mass" of the electrons and holes. 
(K)y
n

creates

electrons and holes relative to the nth unit cell, and describes the motion of the electrons

and holes relative to one another. Due to the translational symmetry of the polymer, 
(K)y
n

has the same form on each unit cell, n, but its form is dependent on the crystal momentum

K. The basis set for the excitation operator 
(K)y
n

is a factor of N smaller than the basis

needed for an oligomer with the same number of unit cells. This reduction in basis set is

the computational advantage of using translational symmetry.

To be consistent with periodic boundary conditions, the transition moment operator is

that for a ring of polymer with N unit cells.34,45 This leads to a selection rule �K = �1.

The one-photon allowed states then have 1Bu symmetry and K = �1 while the two-photon

allowed states have 1Ag symmetry and K = 0, �2.
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D. Scattering Formalism

To obtain a size-consistent and computationally tractable description of the two-photon

excited states, we employ the scattering formalism described in Ref. 45. This is an equation-

of-motion approach (see Section IIB), where the ground state is the Hartree-Fock ground

state, the one-photon states are obtained from S-CI theory, and the two-photon states are

obtained from SD-EOM theory.

The use of S-CI for the one-photon states and SD-EOM for the two-photon states gives a

balanced description, such that states containing two excitons are treated with an accuracy

that is equivalent to that used for the one-photon states. This balance is, for instance,

necessary to obtain a size consistent description of two-photon optical processes.45

This need for a balanced description of the one and two photon states also in
uences

the design of the contracted basis set in Section II F. Both the use of SD-EOM theory and

the design of the contracted basis functions in Section II F assume that a biexciton can be

well described by a local excitation consisting of up to double electron-hole pair excitations.

The calculations presented here do not then test whether any excited state is present in the

computed spectral regions. Rather, they test whether a state consisting of two interacting

electron-hole pairs is present in these regions. In particular, covalent excitations such as the

21Ag state
48 may not be well-described by SD-EOM theory. The next highest level of theory

in this scattering framework would use SD-EOM for the one-photon states, and a theory

that includes up to quadruple excitations for the two-photon states. This would require

development of a size-consistent approach to the inclusion of quadruple excitations. Also,

the number of quadruple excitations scales as the seventh power of the number of unit cells,

within periodic boundary conditions. This would likely limit the calculations to relatively

small systems.

The excited-state absorption from the 11Bu state is calculated using,51

�(1)(!) =
X
a

2 j�baj
2
Eab

E2
ab
� (! + i�)

2 ; (5)

where b is the 11Bu state obtained from S-CI theory, a is summed over all states obtained

from the SD-EOM calculation, and � sets the linewidth. For the spectra shown in this

report, � is set to a small value (0.01 eV) to allow all excited states to be resolved.
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E. Frenkel Scattering Calculations

To aid interpretation of the spectra obtained from the PPP model (Section IIA), we

generate results for interacting Frenkel excitons using the model of Spano and coworkers.41{44

An operator that creates a Frenkel exciton on the nth unit cell is de�ned as,

F̂ y

n
=

1
p
2

h
ay
n
by
n
+ �ay

n
�by
n

i
; (6)

where ay
n
creates an electron and by

n
creates a hole on the nth unit cell and bars are used to

indicate � as opposed to � spin. The Frenkel Hamiltonian can then be written,

Ĥ =
X
n

! F̂ y

n
F̂n �

N�1X
n=1

J(F̂ y

n
F̂n+1 + c:c:)

�
X
n;m

Eexc�exc

jn�mj3
(F̂ y

n
F̂ y

m
F̂m F̂n); (7)

where ! sets the energy required to create a Frenkel exciton, J is the nearest neighbor

hopping, Eexc�exc sets the strength of the dipole-dipole like interactions between excitons,

and c.c. indicates complex conjugation. This model was parameterized to correspond to the

PPP model by setting ! = 6.0 eV and J = 1.75 eV. This value for J was chosen based on

our previous calculations,52 where the bandwidth of the exciton in the PPP model employed

here was found to be 7 eV. Also note that biexciton formation should depend only on the

dimensionless parameter Eexc�exc/J , and this was con�rmed in our implementation.

F. Contracted Scattering Calculations

In the scattering formalism of Section IID, S-CI theory is used for the one-photon states

and SD-EOM theory is used for the two photon states. With periodic boundary conditions,

the number of single electron-hole pair excitations scales as the number of unit cells, N ,

and so a complete set of all single excitations is included in both the S-CI and SD-EOM

calculations. However, the number of double excitations grows as the third power of the

number of unit cells.55 To make the SD-EOM calculations tractable on long polymer chains,

we use the contracted basis functions described in detail in Ref. 45 and summarized brie
y

here. This basis set implements a scattering approach for studying states containing two

interacting excitons. We begin by de�ning an operator that creates a 11Bu exciton on the
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nth unit cell,

B̂(K)y

n
=

1
p
2

m
e�hX

Æ=�m
e�h

c
(K)
Æ

h
a
y

n+xc+Æ=2
b
y

n+xc�Æ=2

+ �a
y

n+xc+Æ=2
�b
y

n+xc�Æ=2

i
; (8)

where ay
n
creates an electron on the nth unit cell, and by

n
creates a hole on the nth unit

cell. Bars are used to indicate � as opposed to � electron spin. The term in brackets

creates a singlet-coupled electron-hole pair separated by Æ unit cells and centered on the

nth unit cell if Æ is even and centered between the nth and (n + 1)th unit cell if Æ is odd

(xc is zero if Æ is even and 1=2 if Æ is odd). The coeÆcients, c
(K)
Æ

are determined through

a S-CI calculation, with the (K) superscript indicating that the form of the 11Bu exciton

depends on the crystal momentum K. Due to the binding between the electron and hole in

an exciton, c
(K)
Æ

becomes small at large jÆj. A local approximation can be implemented by

setting c
(K)
Æ

= 0 for jÆj > me�h, as indicated by the limits on the summation in Eq. (8).

B̂(K)y

n
then corresponds to the creation operator, 
(K)y

n
of Eq. (4), for a 11Bu exciton.

The 11Bu state arises from the delocalization of this \e�ective particle"45,52 as in Eq. (4),

���11Bu

E
=

1
p
N

NX
n=1

ei(
2�

N
)K nB(K)y

n
jHFi: (9)

Here, it will be useful to include basis functions that describe the presence of two excitons

on the polymer chain,

j 2-exciton �i =
1
p
N

NX
n=1

�
ei(

2�

N
)(K+K0)n

� B̂(K)y

n
B̂

(K0)y

n+�

�
jHFi ; (10)

which has the form of Eq. (4) with 
(K)y
n

creating two excitons, one centered on the nth unit

cell and one centered on the (n+�)th unit cell. This basis function describes two excitons

separated by � unit cells and delocalized with a crystal momentum that is the sum of that

of the individual excitons, K +K 0.

Eq. (10) is referred to as a contracted many-body basis function since it consists of a linear

combination of a number of primitive electron-hole excitations. The coeÆcients of the linear

combination are determined during construction of the basis set, via the S-CI calculation of

c
(K)
Æ

in Eq. (8), and are not altered when using this basis set to obtain a variational solution

of the Schroedinger equation. The use of contracted functions substantially reduces the

8



number of variational parameters, making it possible to a�ect a complete diagonalization of

the Hamiltonian within the basis.

A scattering formalism is obtained by allowing interactions to alter the form of the

excitons when the distance between the excitons is less than or equal to nscat unit cells.

Therefore, nscat sets the size of the scattering region. To describe the excitons outside of

the scattering region, the basis set includes the j 2-exciton �i functions of Eq. (10), with

� = nscat : : : (N�1). Within the scattering region, we use a more complete basis of primitive

electron-hole excitations. This is done by �rst constructing a primitive basis consisting of

all single and double electron-hole pair excitations consistent with a maximum electron-hole

pair separation of me�h. All primitives that are already present in the contracted functions

(j2-exciton �i; � = nscat : : : N �1) are then removed, and the remaining primitive functions

provide a basis that describes the excitons within the scattering region.

The scattering calculations performed here do include interactions between excitons out-

side the scattering region. The approximation associated with the use of a scattering basis is

that such interactions are not allowed to alter the form of the excitons outside the scattering

region. When the scattering region is set to zero, nscat = 0, the form of the excitons is held

�xed for all exciton-exciton separation distances. (No primitive double electron-hole pair

functions are included in the basis and thus the interactions between excitons are not al-

lowed to alter their form.) This case is then analogous to Frenkel exciton theory, except that

the PPP Hamiltonian is used to explicitly calculate the interaction between the excitons.

This exciton-exciton interaction is likely to be signi�cantly more complicated than the form

used for the Frenkel excitons in Section II E. For instance, the nature of the Pauli repulsion

between excitons may be quite di�erent. For Frenkel excitons, Pauli exclusion prevents the

creation of two excitons on one unit cell. In the PPP model, the excitons are extended and,

in creating the two-exciton contracted functions, the presence of the electron-hole pair in the

�rst exciton restricts the possible locations of the electron-hole pair in the second exciton.

The resulting Pauli exclusion interaction is most likely a repulsive interaction with a longer

range than the hard-wall exclusion interactions between Frenkel excitons. As the size of

the scattering region, nscat, is increased, exciton-exciton interactions are allowed to alter the

form of the excitons. If the nscat = 0 calculations agree with the results obtained with a

larger nscat, then a Frenkel-like model could be expected to capture the essentials of this

system, although perhaps with a rather complex exciton-exciton interaction potential. To
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the extent that the nscat = 0 calculation di�ers from the converged nscat result, the scattering

model has features which can not be described by Frenkel exciton theory.

III. RESULTS AND DISCUSSION

The primary goal of this research is to determine whether spectral signatures of biexcitons

exist in the long chain limit. The spectra presented in this section are absorption from the

11Bu state to high-energy two-photon states, as described in Section IID. On a long chain, it

should be possible to create two 11Bu excitons that are essentially non-interacting, and such

states should have an energy twice that of the 11Bu state, 2� E11Bu
. We therefore expect

the absorption spectra calculated here to have an intense transition to a state near 2� E11Bu

in the limit of long chains. A spectral signature of a biexciton state is the appearance of a

state at an energy below 2� E11Bu
whose wavefunction is characteristic of a bound state.

A. Frenkel Excitons

This section presents results from the Frenkel exciton model described in Section II E

These results serve as a point of comparison for the PPP calculations presented below.

Fig. 1 shows the excited state absorption spectra for a range of exciton-exciton interaction

strength, Eexc�exc, performed on a chain with 71 unit cells and periodic boundary conditions.

The calculations indicate that for Eexc�exc greater than about 3 eV, or Eexc�exc/J = 1.7, a

biexciton state breaks o� from the two-exciton continuum. For all Eexc�exc, transitions are

observed to states at and above 2� E11Bu
. For Eexc�exc greater than 3 eV, the formation of

the biexciton is observed spectrally as a peak below 2� E11Bu
.

Fig. 2 shows the analysis of the excited state wavefunctions for the states observed in

the spectra for Eexc�exc = 2.0 and 4.5 eV in Fig. 1. When Eexc�exc = 2.0 eV, biexciton

formation does not occur, as shown by the delocalized wavefunctions of Fig. 2. The number

of nodes increases smoothly with energy, and the state energies follow the form expected for

noninteracting particles-in-a-box (a least squares �t yields E = 2:46 eV + 0:021 eV n2 for

n = 1 : : : 5). In the in�nite chain limit, these states will form a continuum beginning at

about 2.46 eV. This corresponds to the energy required to create an additional exciton on

a long chain, and the value is essentially identical to the 2.5 eV required to create the �rst
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exciton.

When Eexc�exc = 4.5 eV, a biexciton state occurs at 2.09 eV. The wavefunction of this

states indicates binding between the excitons with an average separation of about two to

three unit cells. For the higher-energy states, the wavefunction is delocalized over the entire

chain. The lowest unbound state (at 2.50 eV) has two nodes (mexc�exc = 0 and 3) and the

number of nodes increases smoothly with increasing state energy. These higher energy levels

�t a particle-in-a-box form (E = 2:46 eV + 0:026 eV n2) with n = 1 being the 2.50 eV

state. Just as for Eexc�exc = 2.0 eV, these states will form a continuum beginning at 2.46 eV

in the limit of an in�nite chain. This indicates that the formation of a biexciton has little

e�ect on the energy required to create two free excitons.

Similar results are obtained for Frenkel excitons on �nite linear chains. Fig. 3 shows

the 11Bu excited state absorption spectra for various chain lengths with exciton-exciton

interaction above and below that required to support biexcitons on long chains. For

Eexc�exc =2.0 eV, which does not support biexcitons on long chains, an intense transi-

tion occurs to a state containing two unbound excitons and this state approaches 2� E11Bu

from above. A number of states are also observed at higher energy, with intensity patterns

that are not easily interpreted. For instance, these states do not �t the particle-in-a-box

model used above for long chains with periodic boundary conditions. This complex be-

havior may arise from an interplay between the �nite-chain boundary conditions and the

exciton-exciton potential. For a value of Eexc�exc that leads to biexciton formation on long

chains (Eexc�exc=4.5 eV), the lowest energy transition shown in Fig. 3 arises from a biexciton

state, as con�rmed by analysis of the wavefunction. The energy of this biexciton state is

relatively independent of chain length. Comparison of the Eexc�exc = 2.0 and 4.5 eV spectra

reveals that the biexciton state borrows intensity from the unbound two-exciton state. On

short chains, N = 9 in Fig. 3, the biexciton carries essentially all of the intensity and the

relative intensity to the two-exciton state increases rapidly with chain length. Just as for

Eexc�exc = 2.0 eV, the unbound two-exciton state approaches 2� E11Bu
from above, but the

Eexc�exc = 4.5 eV results show a much stronger dependence on chain length.

In comparing intensities, it is important to note that the intensities of the bound and

free exciton states should scale di�erently with chain length in the long-chain limit.39 The

transition from a state with one exciton to a state with two unbound excitons corresponds to

creation of an additional free exciton. Since there are N�1 locations for this second exciton

11



on a chain with N unit cells, the intensity should scale as N in the long chain limit. This

is in contrast to the bound biexciton state, where the second exciton must be created next

to the �rst exciton and so the number of possible locations is independent of chain length.

(In e�ect, the biexciton acts a single e�ective particle and the transition corresponds to

a conversion of the exciton into a biexciton, as opposed to the creation of an additional

e�ective particle.) The transition from the 11Bu state to the biexciton state thus has an

intensity that is independent of chain length in the long-chain limit. The spectra in Fig. 3

indicate that the intensity of the biexciton transition saturates by about 21 unit cells. The

intensity of the free exciton transition increases rapidly with chain length, and begins to

scale as N above about 41 unit cells.

The Frenkel exciton results of Fig. 1 allow us to examine the implications of using periodic

boundary conditions within a well-understood model. This insight is useful since we must

use periodic boundary conditions in order to investigate the long-chain limit of the PPP

Hamiltonian. Fig. 1 shows a rather substantial di�erence between the K = 0 and K = 2

spectra, particularly in the region near 2� E11Bu
. The splitting between the K = 0 and K = 2

transitions for the biexciton transition are as expected for a system in which the biexciton

states form a band with a minimum at K = 0. However, in the vicinity of 2� E11Bu
, the K = 0

and K = 2 spectra show di�erences that are not as easily rationalized. For instance, it is not

clear why the lowest two peaks near 2� E11Bu
carry very di�erent intensities for the K = 0

versus K = 2 spectra. Similar e�ects are observed in the PPP results of Section II F, and we

take their presence within the Frenkel exciton model as evidence that this spectral feature is

not indicative of complex exciton-exciton interactions. In particular, large di�erence between

the K = 0 and K = 2 spectra are observed even for Frenkel excitons with no interactions

(Eexc�exc = 0) and with repulsive interactions (Eexc�exc = -4.5 eV). Also note that these are

small splittings in a spectral region that will be dominated by one-photon absorption, and

so are of no apparent experimental interest.

In summary, the results for Frenkel excitons indicate that excited-state absorption pro-

vides a good probe of biexciton formation. The biexciton appears as an intense transition

below 2� E11Bu
and exhibits a weak dependence on chain-length.
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B. PPP Oligomers

Fig. 4 shows excited-state absorption spectra for polyenes with between 4 and 9 unit

cells. These were obtained from the PPP Hamiltonian using the scattering methodology

of Section IID with a complete S-CI basis set for the one photon states and a complete

SD-EOM basis set for the two photon states. Examination of Fig. 4 shows two classes of

states.

The �rst class are the two states that have 48% and 64% double electron-hole pair char-

acter for N=9. The energy of these states decreases smoothly with increasing chain length,

while the double electron-hole pair character remains relatively constant. In the Frenkel ex-

citon calculations of Fig. 3, the states containing two unbound excitons approach 2� E11Bu

from above and have an intensity that increases with chain length. The lowest-energy state

has an intensity that increases with chain length, suggesting two unbound excitons. How-

ever, two aspects of these states di�er from the behavior expected for free exciton states.

The �rst is that these states have signi�cant contributions from single electron-hole pair

con�gurations. The second is that the energy of the lowest of the two states drops below

2� E11Bu
for long chains, although the center of the two states does remain above 2� E11Bu

.

We attribute these states to mixtures between con�gurations involving two unbound excitons

and con�gurations containing a single electron-hole pair.

The second class is the state with 89% double electron-hole pair character for N=9. The

energy of this state also decreases smoothly with chain length, but with a dependence on

chain length that is stronger than that of the �rst class, such that it crosses the lowest state

of the �rst class between N=6 and N=7 and is not seen in the spectra for N<6. The large

contribution from double electron-hole pair con�gurations, and the energy below that of

the �rst class for N>7, suggests assignment to a biexciton. However, since the biexciton

state is independent of chain length in the Frenkel model, the strong dependence on chain

length observed here argues against a biexciton assignment. In any case, given the strong

dependence of the energy of this state on chain length, examination of the long chain limit

is desirable.
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C. Long PPP Chains

In this section, we consider solutions of the PPP Hamiltonian on long chains of polyacety-

lene, using periodic boundary conditions and the scattering basis set of Section II F. This

basis set restricts the maximum separation between the electron and hole in the exciton to

5 unit cells, me�h = 5 in Eq. (8). (Note that no such approximation was made in the �nite

chain calculations of Section III B.) This basis also de�nes a scattering region with size nscat

within which exciton-exciton interactions are allowed to alter the form of the excitons.

The convergence of the calculations with respect to the size of the scattering region,

nscat, is depicted in Fig. 5. The behavior with increasing nscat is fairly smooth, except for

some discontinuous changes arising from mixing with single electron-pair con�gurations. For

instance, the spectrum for nscat = 2 exhibits a transition near 2.3 eV that is not seen for any

other value of nscat. This transition disappears when single electron-hole pair con�gurations

are removed from the EOM calculation of the two-photon states (D-EOM), and is therefore

attributed to mixing between a bright state that is predominantly double electron-hole pair

in character and dark single electron-pair con�gurations. The peak at 2.3 eV arises only when

nscat = 2 and is therefore an artifact of this particular value for the scattering region. This

\mixing with background singles" occurs in a number of the calculated spectra presented in

this section and is discussed in more detail below.

The spectra of Fig. 5 are well converged with respect to the size of scattering region, nscat.

Although the higher energy transitions move about slightly in energy between nscat = 5 and

9, their intensities and relative positions are fairly well established. (The di�erences between

nscat = 8 and 9 arise from mixing with background singles, as will be seen in the following

detailed analysis of the nscat = 9 spectra.)

When nscat = 0, interactions between excitons are not allowed to alter their form. Since

the results obtained for nscat = 0 do not agree with those for larger nscat, especially at high

energy, we conclude that interactions between excitons alter their form in a manner that has

consequences on the spectra. This suggests that a Frenkel exciton model, where interactions

are not allowed to alter the form of the excitons, may not be suÆcient to account for this

high energy spectral region.

Fig. 6 shows the excited-state absorption spectra obtained with nscat = 9 on periodic

chains with between 21 and 71 unit cells. Due to the use of periodic boundary conditions,
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the calculated dependence on chain length may not re
ect that of �nite chains. This is

especially true for small numbers of unit cells where large di�erences are observed between

K = 0 and K = 2. The use of periodic boundary conditions should not e�ect the long

chain limit of the spectrum, and so this is the focus of our analysis. The dependence on the

number of unit cells is included primarily because it is a useful means to group transitions

into classes and is therefore an aid to assignment of the long-chain limit.

Assignment of the long-chain limit of the spectrum is also aided by the results in Figs. 7

and 8 and Table I. Table I shows the contribution of single and double electron-hole pair

con�gurations to the states giving rise to the transitions in the spectra of Fig. 6. Fig. 7

shows the probability density for the double electron-hole pair con�gurations as a function

of exciton-exciton separation. (Since the separation between excitons can not be uniquely

de�ned in the scattering region, the probability density is distributed uniformly throughout

the scattering region in Fig. 7.) Fig. 8 shows the spectra obtained when only double electron-

hole pair con�gurations are included in the calculation of the two-photon states (D-EOM).

Comparison of Figs. 6 and 8 therefore shows the e�ects of single electron-hole pair excitations

on the two-photon states.

This information allows us to group the excitations observed on long chains into three

classes, which are discussed in turn below.

The �rst class of transitions are those that are most intense in the long chain limit,

and are indicated by an (f), for free excitons, in Table I. These states consist primarily of

double electron-hole pair con�gurations, having greater than 83% double electron-hole pair

character for all chain lengths and greater than 97% double electron-hole character for chain

lengths of 51 and above. Fig. 7 shows that the double electron-hole pair con�gurations consist

of well separated excitons. These transitions are therefore assigned to states containing two

unbound or free excitons. These states approach 2� E11Bu
in the limit of long chains, as

expected for two free excitons. The K = 2 transition approaches 2� E11Bu
from above while

the K = 0 transition approaches 2� E11Bu
from below. This behavior can be rationalized

in terms of the selection rule for K (Section IIC). Since the one-photon 11Bu state contains

a single K = 1 exciton, 2� E11Bu
is the energy required for creation of two K = 1 excitons,

or a two-exciton state with K = 2. We therefore expect the K = 2 unbound two-exciton

state to approach 2� E11Bu
from above, due to the excluded volume interaction between

the excitons. We also expect the K = 0 and K = 2 unbound two-exciton states to approach
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one another in the limit of long chains. Both of these behaviors are, indeed, observed in

the calculated spectra. The K = 0 transition approaches 2� E11Bu
from below because the

splitting between the K = 0 and K = 2 states is larger than the shift due to the excluded-

volume e�ect.

The most signi�cant result in the long-chain limit of the spectrum is the absence of

spectral features below the free exciton transition. This indicates that this system does not

show spectral features due to biexciton states in the limit of long chains.

The second class of states are those labelled with an (x) in Figs. 6 - 8 and Table I. These

states behave similarly to the higher-energy transitions of the Frenkel exciton model. Their

energy decreases smoothly with increasing chain length, approaching that of the unbound

exciton states discussed above. For K = 2, the states have greater than 90% double electron-

hole pair character, and persist in the D-EOM spectra in Fig. 8, with slight shifts in energies

and intensities. The analysis of the wavefunction in Fig. 7 for the 2.86 eV transition shows

a nodal pattern similar to that seen for the second unbound exciton state in the Frenkel

model of Fig. 2. The K = 0 spectra are similar, but exhibit two di�erences. One di�erence

is that for N = 51, the K = 0 state appears to mix with background singles, giving rise to

two transitions near 3.4 eV. This assignment to mixing with background singles is evidenced

by both states having substantial contributions from single electron-hole pair con�gurations

and there being only a single transition present in the D-EOM spectrum of Fig. 8. The other

di�erence is that the wavefunction for the K = 0 state in Fig. 7 shows a more complex nodal

pattern than that seen for K = 2, with two nodes being present outside of the scattering

region. Nevertheless, it seems reasonable to assign both the K = 0 and K = 2 transitions

of this class to states containing unbound excitons. By analogy with similar states in the

Frenkel exciton model, we expect these higher-energy unbound exciton states to converge

onto the lowest-energy unbound exciton states in the limit of an in�nite chain.

The third class of states are the K = 0 states labelled with a (*) and the K = 2 states

labelled with a (+) in Figs. 6 - 8 and Table I. These states are grouped together based on

their similar and smooth change in energy with increasing chain length, and their similar

wavefunction decompositions in Table I. Fig. 7 reveals that the probability density arising

from the double electron-hole pair con�gurations lies predominantly in the scattering region.

We therefore assign these transitions to either overlapping excitons or to some other type

of two-photon allowed state in which two electrons and two holes are bound together into
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a single e�ective particle. If these states do arise from overlapping excitons, their location

above the energy of two free excitons is indicative of a scattering resonance rather than a

biexciton.

The overlapping exciton states mix with background singles to give two transitions for

K = 0, labelled with a (*), and two transitions for K = 2, labelled with a (+), in Fig. 6.

This assignment to mixing with background singles is supported by Table I, which shows

that these states have signi�cant contributions from single electron-hole pair con�gurations.

Also, in the D-EOM spectra of Fig. 8, only a single transition of this type is observed for

each value of K. This suggests that the overlapping exciton state mixes with single electron-

hole pair con�gurations, leading to the two transitions in the SD-EOM spectra in Fig. 6.

Fig. 5 indicates that this mixing with background singles occurs for nscat = 9 but not for

nscat = 6 - 8.

Mixing with background singles was invoked three times in the above analysis. In each

case, the mixing only appeared for speci�c values of the model parameters (nscat = 2 for the

2.3 eV transition of Fig. 5, a chain length of 51 unit cells for the K = 0 higher-energy free

exciton transition of class (x), and nscat = 9 for the overlapping exciton peaks of class (*)

and (+)). This suggests that the mixing arises when a single electron-hole pair con�guration

happens to be in close resonance with the double electron-hole pair state that carries the

two-photon intensity. It seems unlikely that the mixing with background singles, observed

in these calculations, will be re
ected in the real system. For the model used here, the

density of single electron-hole pair excitations is fairly low; a S-CI calculation on a periodic

system with 71 unit cells gives about 4 states in the energy range of Fig. 6 for each value

of crystal momentum, K. Since this energy range is above the exciton binding energy, the

single electron-hole pair states will become a continuum in the long-chain limit56 and this

will likely remove the resonances. Even if such resonances still remain in the long-chain

limit, the amorphous nature of conjugated polymers �lms seems likely to average away their

e�ects on the spectra.

We therefore view the mixing with background singles as an aspect of the calculations

that is not of relevance to the actual system. The above results can therefore be summarized

as showing states containing free excitons, that behave similarly to that of unbound Frenkel

excitons, and states containing two overlapping electron-hole pairs, whose energy is above

that of the lowest free exciton state.
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Due to the use of periodic boundary conditions, the spectra of Fig. 6 are only reliably

connected to that of a �nite chain in the limit of long chains. Nevertheless, the chain length

dependence of Fig. 6 may give some insight into the e�ects of con�ning two excitons to a

small region. As the chain length decreases, the energy of the overlapping excitons (the

states labelled (*) and (+) in Figs. 6 and 8) decreases, while the energy of the 2� E11Bu

transition increases. Eventually the overlapping exciton state crosses the 2� E11Bu
state

such that the overlapping excitons lie lower in energy than the free excitons. This suggests

that spatially con�ning excitons can lead to biexciton formation. This may account for the

double electron-hole pair state observed in the �nite chain calculations of Fig. 4. For a

�nite chain with 9 unit cells, the double electron-hole pair state appears about 0.5 eV below

2� E11Bu
. A similar biexciton binding energy is observed in the periodic system with 21

unit cells, where the overlapping exciton transitions occur about 0.5 eV below 2� E11Bu
.

IV. SUMMARY

This calculations presented here explore the existence of biexciton states in conjugated

polymers, using the PPP Hamiltonian of polyacetylene as a simple two-band model of these

materials. The excited state absorption spectrum from the 11Bu state is calculated as a

probe of the biexciton states. This approach to identifying biexcitons was veri�ed using a

Frenkel exciton model as a benchmark system. In the Frenkel model, a biexciton state is

formed above some critical exciton-exciton interaction strength. This biexciton state has an

energy below that of 2� E11Bu
and carries signi�cant intensity from the 11Bu state, such

that it is readily identi�ed in the excited state absorption spectrum.

On �nite chains with between 7 and 9 unit cells, states are observed below 2� E11Bu

that are dominated by double electron-hole pair con�gurations. While this is suggestive of a

biexciton state, the energy of this double electron-hole pair state decreases rapidly with chain

length. This is in contrast to the Frenkel exciton model, where the biexcitons are relatively

independent of chain length. To explore the existence of a biexciton state in the long-chain

limit, calculations were done on large systems using periodic boundary conditions and the

scattering methodology discussed in Sec. II F. When the size of the scattering region is set to

zero, the scattering formalism is analogous to a Frenkel exciton model in that exciton-exciton

interactions are not allowed to alter the form of the excitons. However, it di�ers from the
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Frenkel model in that it uses the PPP Hamiltonian to explicitly calculate the exciton-exciton

interactions. It also includes the �nite size of the excitons and the resulting Pauli-exclusion

interactions between excitons. As the size of the scattering region is increased, exciton-

exciton interactions are allowed to alter the form of the excitons when the exciton-exciton

separation is less than the size of the scattering region. Convergence is observed for a

scattering region of about 6 unit cells. The need for a large scattering region suggests that

a Frenkel exciton model is not suÆcient to describe the states that arise in the high-energy

region above 2� E11Bu
.

The principal result of the scattering calculations is the absence of spectral signatures

of biexcitons in the long-chain limit. States are seen above 2� E11Bu
that have a large

contribution from two overlapping electron-hole pairs. If these states are attributed to

overlapping excitons, their existence above 2� E11Bu
is suggestive of a scattering resonance

rather than a bound biexciton state. Within periodic boundary conditions, decreasing the

length of the chain causes the energy of this overlapping electron-hole pair state to drop

below 2� E11Bu
. Finite chains with between 7 and 9 unit cells also exhibit states below

2� E11Bu
that are dominated by double electron-hole pair con�gurations. These results

suggest that con�nement of excitons can lead to biexciton formation.

The results presented here re
ect the nature of exciton-exciton interactions within a

restricted but reasonable model of conjugated polymers. The model assumes a single valence

and conduction band, with electron-hole interactions calculated via the PPP Hamiltonian.

Since the geometry is frozen, which suppresses soliton formation, and dielectric screening of

electron-hole interactions is not included, this model corresponds to a fairly large exciton

binding energy (>2.5eV)53,54. The scattering formalism further assumes that excitons consist

of single electron-hole pair con�gurations and biexcitons consist of a mixture of single and

double electron-hole pair con�gurations. The model therefore explores the states resulting

from placing one or two electron-hole pairs on a periodic chain. The results indicate that

biexciton formation does not occur on long chains, although it may be present in con�ned

systems. If biexciton formation does occur in long-chain conjugated polymers, it must arise

from e�ects not included in this model, such as the presence of multiple bands, deviation of

the electron-hole interaction potential from that of the PPP Hamiltonian, or the contribution

of more highly excited electron-hole pair con�gurations to the exciton or biexciton states.
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FIG. 1: Excited-state absorption from the 11Bu one-exciton state, for long chain Frenkel excitons

with various Eexc�exc, using periodic boundary conditions and N = 71 unit cells. The dotted line

is K = 0, and the solid line is K = 2. The units of intensity are the same for all panels.
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FIG. 2: Analysis of the wavefunctions for the states giving rise to the transitions in the spectra

in Fig. 1 for Eexc�exc = 4.5 (solid line) and 2.0 (dotted line). The K = 2 wavefunctions have the

same form as K = 0. The probability density is shown as a function of exciton-exciton separation,

mexc�exc.
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FIG. 3: Excited-state absorption from the 11Bu state, for Frenkel excitons with Eexc�exc = 4.5

(solid line) or 2.0 (dotted line). The system is a linear chain with N unit cells. The 11Bu state

energies are indicated by arrows. To allow comparison with chain length, the scale of the axes is

the same for all panels, such that a constant height indicates the intensity is independent of chain

length.
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FIG. 4: Excited-state absorption for polyenes with N unit cells. The 11Bu state energies are

indicated by arrows. The numbers above the peaks indicate the relative contribution of double

electron-hole pair con�gurations to the excited state responsible for the transition.
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FIG. 5: Excited state absorption from the 11Bu state obtained for periodic polyacetylene chains

with 71 unit cells and the indicated scattering regions, nscat. The dotted line is K = 0, and the

solid line is K = 2.

29



x

x

x

x

x

x

x

x

FIG. 6: Excited state absorption from the 11Bu state obtained for periodic polyacetylene chains

with N unit cells and a scattering region of nscat = 9. The arrows indicate the 11Bu state energy,

which is the expected long-chain position of the 2� E11Bu
peak. The dotted line is K = 0, and the

solid line is K = 2. The peak labels are discussed in the text.
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2.57 eV (f)
K=0

2.72 eV (*)
K=0

2.87 eV (*)
K=0

3.05 eV (x)
K=0

2.63 eV (f)
K=2

2.74 eV (+)
K=2

2.95 eV (+)
K=2

2.86 eV (x)
K=2

FIG. 7: Analysis of the wavefunctions for the states giving rise to the transitions in the N = 71

spectrum of Fig. 6. The probability density is shown as a function of exciton-exciton separation,

mexc�exc. The dotted lines show the average probabilities within the scattering region. (Note that

the probabilities due to single electron-hole con�gurations are not included.)

31



x

x

x

x

x

x

x

x

FIG. 8: Same as Fig. 6, but without inclusion of single electron-hole pair con�gurations in the

calculation of the two-photon excited states (D-EOM).
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TABLE I: Analysis of the wavefunctions giving rise to the transitions in the spectra of Fig. 6. The

relative probabilities are listed for single electron-hole pair con�gurations (% singles) and for double

electron-hole pair con�gurations within ( <nscat) and outside (>nscat) of the scattering region.

K = 0 K = 2

N E(eV) %sing %doub<nscat %doub>nscat E(eV) %sing %doub<nscat %doub>nscat

2.57(f) 0.3 0.4 99.3 2.63(f) 0.6 1.6 97.8

2.72(*) 37.8 58.2 4.0 2.74(+) 40.0 64.0 5.0

71
2.87(*) 22.3 66.4 11.3 2.95(+) 30.9 34.4 34.6

3.05(x) 16.2 26.0 57.8 2.86(x) 9.5 36.7 53.8

2.58(f) 0.6 0.8 98.6 2.66(f) 1.8 3.7 94.5

2.70(*) 37.1 60.6 2.3 2.88(+) 31.7 54.7 13.6

61
2.86(*) 29.8 66.7 3.5

3.18(x) 11.1 34.7 54.2 3.02(x) 11.6 16.5 71.9

2.59(f) 2.1 2.5 95.4 2.68(+) 24.0 60.5 15.5

2.67(*) 34.9 61.2 3.9 2.72(f) 3.0 16.5 80.5

51 2.83(*) 33.9 64.7 1.4 2.80(+) 41.5 54.1 4.4

3.37(x) 34.0 38.8 27.2 3.16(x) 5.5 21.5 73.0

3.44(x) 72.7 16.2 11.1

2.59(*) 26.0 37.4 36.6 2.63(+) 22.8 76.7 0.5

2.64(f) 10.2 29.9 59.9 2.79(f) 4.5 13.8 81.7

41
2.77(*) 36.8 60.7 2.5 2.86(+) 42.8 44.4 12.8

3.41(x) 9.1 36.1 54.8

2.44(*) 28.9 33.9 37.2 2.53(+) 17.9 82.1 0.0

2.54(f) 9.3 54.9 35.8 2.79(+) 50.2 48.4 1.4

31
2.67(*) 38.6 47.7 13.7 2.95(f) 2.1 14.6 83.3

3.31 66.7 33.3 0.0

2.32(*) 14.3 83.2 2.5 2.27(+) 13.2 86.8 0.0

21
2.65(+) 54.9 45.1 0.0

2.59(f) 16.4 47.7 35.9 3.23(f) 1.2 54.9 43.9
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