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Abstract

New methodologies for electronic structure calculations on organic materials
by

Jason Douglas Weibel
Doctor of Philosophy in Chemistry

Carnegie Mellon University

David Yaron, Advisor

Organic materials have great potential for use in electronic and photophysical devices.
A detailed understanding of the electronic structure of these materials will allow us to
better understand the structure-property relationships of relevance to device design.
This thesis develops and applies methods for studying the electronic structure of three
classes of organic electronic materials: nonlinear optical chromophores, conjugated
polymers, and carbon nanotubes.

The first part of this thesis examines the nonlinear optical properties of multi-
polar organic chromophores. This is done by extending the internal field model of
Oudar, which is applicable only to pseudo one-dimensional systems such as push-pull
polyenes, to chromophores with general multi-dimensional acceptor-donor substitu-
tion patterns. The model developed here takes full account of the multipolar nature
of the internal potential applied by the acceptors and donors, and the tensor prop-
erties of the resulting nonlinear optical susceptibility. The model is tested against
quantum chemical calculations on representative systems.

The second part of this thesis concerns the development of a method that allows
intermediate neglect of differential overlap (INDO) calculations to be performed under
periodic boundary conditions. This allows the results of calculations on conjugated
polymers to be expressed in the language of solid state physics. The method is used to
study the absorption spectrum of poly(para-phenylene vinylene) (PPV). INDO calcu-

lations on oligomers of PPV as well as long chains with periodic boundary conditions



are reported. The long-chain calculations are used to assign the spectral features
to transitions between bands, and these assignments are transferred to oligomers by
examining how the calculated oligomer spectra evolve with chain length. The com-
bination of periodic calculations and oligomer calculations enables a more complete
description of the experimental absorption spectra of PPV and its derivatives.

The second part of this thesis also examines electron-hole symmetry breaking in
carbon nanotubes. This study is facilitated by an analytical approach for includ-
ing the effects of next-nearest-neighbor interactions in Hiickel calculations on carbon
nanotubes. These next-nearest-neighbor interactions break electron-hole symmetry.
While this symmetry breaking does not alter the band gap, it does alter the thermo-
electric power which is zero in a system that has electron-hole symmetry.

The third and final part of this thesis extends the dynamic dielectric model of
Moore et al. Inclusion of dielectric effects is necessary to obtain reliable exciton
binding energies for conjugated polymers. The original dynamic dielectric model
used Hiickel theory to describe the polarization induced in the dielectric medium.
Here, this Hiickel model is replaced by a more accurate Pariser-Parr-Pople model.
The results indicate that the use of Hiickel theory is valid, provided the parameters

are chosen correctly.



Chapter 1
Introduction

Organic materials have opened up many possibilities in the creation of electronic
devices such as flat screen displays(3, 4], lasers[5, 6], nonlinear optical chromophores|7,
8,9, 10, 11], and transistors[12]. The potential advantages of using organic materials
include ease of construction, low cost, low weight, and flexibility.[9, 8, 13] To take full
advantage of the structural flexibility afforded by organic synthesis, it is useful to have
a more complete understanding of the relationships between the chemical structure
and the properties of relevance to device design. The electronic and photophysical
properties are directly related to the electronic structure of the materials, and the
development and application of electronic structure methods to these materials is an
active area of research.[14, 15, 16, 17, 18, 9, 7, 8, 19, 20, 11] This thesis develops
and applies a number of new methods for studying the electronic structure of organic
materials. The materials and methods studied here can be grouped into three classes
of organic electronic materials: nonlinear optical chromophores, conjugated polymers,

and carbon nanotubes.

1.1 Thesis overview

Part I of this thesis deals with calculations on non-linear optical materials. These
materials typically consist of medium-sized organic molecules that are collected into

a bulk sample to form an actual device. In these systems, calculations on single



molecules are adequate to reflect the properties of the bulk sample.[21, 9] Chapter 2
develops some background on the materials, including traditional chromophores and
new multipolar chromophores that have become of interest due to the development of
optical poling techniques. It is the description of these new multipolar chromophores
that motivated the theory developed here.

An expansion of the energy of the molecule in a field, F, defines the nonlinear
optical susceptibilities,

W:WO—MF—laFQ—lﬁF?’—LyF‘*—---, (1.1)
2 3 4

where W, is the energy in zero field, and the nonlinear optical susceptibilities are ten-
sors of increasing rank, p first rank, a second rank, g third rank, v fourth rank, and so
on. The increasingly complex tensor nature of the higher order terms in the expansion
makes their description increasingly challenging. Additionally, since the odd order
rank susceptibilities are zero in a molecule or bulk sample that is centrosymmetric,
methods must be found to ensure an non-centrosymmetric distribution.

Traditionally, nonlinear optical chromophores are created by adding electron donor
and/or acceptor substituents to the ends of a linear centrosymmetric molecular skele-
ton. The presence of the substituents breaks the inversion center of the molecular
skeleton and creates a dipole moment within the molecule. The absence of a center
of symmetry allows for the possibility of non-zero odd-order nonlinear susceptibili-
ties, such as the first hyperpolarizability, 5. The presence of a dipole moment also
allows the molecules of the bulk sample to be aligned using a dc electric field. Since
the substituents typically lie along the same axis, the hyperpolarizabilities of these
traditional linear, rod-like molecules are dominated by a single component. This one-
dimensional character greatly simplifies the analysis. In particular, Oudar derived a
one-dimensional internal field model that relates the response of the molecule to the
properties of the skeleton.[22]

Optical poling has made it possible to utilize a new class of chromophores with
multi-dimensional substitution patterns. For a multi-polar system, the response may
no longer be dominated by a single component. The possibility of multiple compo-

nents in the response has necessitated the development of a model where the electron



acceptors and donors are viewed as creating an internal potential within the molecule
and the susceptibilities are treated in their full tensorial form.

Chapter 3 begins our development of a general internal potential model for multi-
polar non-linear optical chromophores. Viewing the substituents as creating an in-
ternal potential and using the full tensor expansion of the energy allows for a model
that, similar to the linear model, relates the non-linear response to the substitution
pattern of acceptors and donors on the molecular skeleton.

The internal field model is a linear response theory. To obtain information from
the complex tensorial relationship between the internal field and the hyperpolariz-
ability, the potentials are first expressed in vector form. The relationship between
the internal potential and the hyperpolarizability then reduces to a matrix multi-
plication. To analyse the relationship between substitution and hyperpolarizability
response, singular value decomposition (SVD) is performed on the matrix connecting
the internal potential and hyperpolarizability response (L).

To examine the effectiveness of the generalized internal potential model, calcu-
lations are performed on a benzene skeleton and a series of substituted benzenes.
In a highly symmetric molecule, such as benzene, symmetry analysis and singular
value decomposition give the same results. Calculations done using internal poten-
tial patterns with arbitrary strength and on a series of substituted benzene skeletons
with substituents of varying strength provide information about the range of chemical
acceptors and donors over which the generalized internal potential model is valid.

Chapter 4 continues our examination of the generalized internal potential model
through calculations on three additional molecular skeletons. The symmetry anal-
ysis and singular value decomposition for these additional molecular skeletons are
performed following the methods of Chapter 3.

Part II of this thesis concerns calculations done on a different class of molecu-
lar system. In this part, calculations are performed on conjugated polymers and
molecules for which the use of periodic boundary conditions is convenient. Chapter
5 provides a general background on periodic boundary conditions, outlining concepts
such as the lattice of the system, the reciprocal lattice, the Brillouin zone, forms

for periodic wave functions, and an example of the evaluation of an operator under



periodic boundary conditions.

Chapter 6 discusses and establishes the formalism for using the intermediate ne-
glect of differential overlap (INDO) model under periodic boundary conditions. De-
velopment of this model allows the results of calculations to be stated in the context
of solid state physics, so comparisons can be made with other calculations. Calcula-
tions performed under periodic boundary conditions also allow the optical transitions
in oligomers to be assigned to bands.

As an application of this approach, we study the absorption spectrum of poly(para-
phenylene vinylene) (PPV) and the questions concerning assignment of the UV /VIS
absorption spectrum. The use of the INDO model allows for geometric effects, such
as non-planar molecular geometries, to be examined and the periodic boundary con-
ditions allow band assignments to be made. In addition to calculations utilizing
periodic boundary conditions, calculations are also done on a series of PPV oligomers
with varying numbers of phenylene rings. The long-chain calculations are used to
assign the spectral features to transitions between bands, and these assignments are
transferred to oligomers by examining how the calculated oligomer spectra evolve
with chain length. From our study, the combination of finite chain size, substituents,
and non-planarity of the sample results in a better understanding of the absorption
spectra.

Chapter 7 concerns the examination of electron-hole symmetry breaking in carbon
nanotubes. This is facilitated by a new method for inclusion of next-nearest-neighbor
interactions in such systems. This method uses a graph theoretical representation of
system connectivity to derive an analytical expression for the effects of next-nearest-
neighbor interactions. These interactions break electron-hole symmetry by expanding
the valence bands and contracting the conduction bands. While this symmetry break-
ing does not alter the band gap, it does alter the thermoelectric power. In a system
with electron-hole symmetry, the thermoelectric power is zero.[23, 24, 25] The method
developed here allows the thermoelectric power of a single nanotube to be determined
analytically.

Finally, Part III and Chapter 8 examine dielectric effects in calculations on conju-

gated polymers. Semi-empirical quantum chemistry consistently determines exciton



binding energies that are larger than those seen in experiment.[26, 27, 28] To obtain
agreement with experiment, many quantum chemical calculations are parameterized
so that the Coulombic repulsion between electrons is much lower than that found in
gas phase calculations.[29, 30, 31] This likely reflects the importance of interactions
between polymer chains in the solid state. Our group has previously developed a dy-
namic dielectric model that explicitly includes dielectric interactions with surrounding
polymer chains.[32] Chapter 8 continues the investigation into this dynamic dielectric
model. Originally, the model used Hiickel theory for the solvent chains. Here, the
Pariser-Parr-Pople model is used for the solvent, and the results are compared to
those obtained using the Hiickel model. The results indicate that the use of Hiickel

theory is adequate, provided the Hiickel parameters are chosen appropriately.



Part 1

Nonlinear Optical Materials



Chapter 2

A brief introduction to nonlinear

optical materials

2.1 Introduction

The energy of a molecule in an external electric field, F', can be expanded as
follows,
1

1 1

where W, is the energy in zero field, and the nonlinear optical susceptibilities are
tensors of increasing rank, p first rank, o second rank, S third rank, v fourth rank,
and so on. The response of primary interest here is the first hyperpolarizability, or
second order nonlinear optical susceptibility, 5.

Odd-order responses, such as the first hyperpolarizability, are zero if the molecule
or bulk sample is centrosymmetric.[33] Typically, construction of a nonlinear optical
chromophore starts with a centrosymmetric molecule, to which substituents are added
to break the center of symmetry. In the bulk sample, these molecules may be randomly
distributed so as to produce a centrosymmetric distribution. To obtain a bulk second
order nonlinear optical susceptibility, a methods must be found to align the molecules
and create a non-centrosymmetric distribution. In molecules with a permanent dipole

moment, the molecules may be aligned with a dc electric field. In more complicated
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molecules that may not possess a permanent dipole moment, alternative methods,
such as optical poling, must be found to induce alignment.

Traditionally, linear molecules with a permanent dipole moment have been used
to generate nonlinear optical responses because the presence of the dipole allows for
alignment of the molecules in the bulk sample through the use of a dc electric field.

The design scheme of these types of molecules is typically pseudo one-dimensional,
[Donor]-[Electronic conjugated pathway|-[Acceptor],

with the conjugated pathway being benzene, polyene, stilbene or similar conjugated
molecular skeleton.[7] Variations in conjugation length and acceptor and/or donor
strength are common methods undertaken to optimize the nonlinear response, while
still maintaining a reasonable stability.[7, 10, 9] It has been shown that § should scale
with chain length.[34, 9] Therefore, one method of attempting to achieve large hy-
perpolarizabilities is to increase the chain length between electron and donor groups.
Along these lines, Marder et al. have been able to achieve high hyperpolarizabilities
by reducing the effective bond length alternation in the conjugated pathway. This is
done by tuning the relative contributions of neutral and charge-separated resonance
to the ground electronic state. They have been able to achieve hyperpolarizabilities
between 20 and 911x107° esu.[10]

Collection and alignment of linear optical chromophores in the bulk sample is
often done using corona poling.[35] In corona poling the sample is dispersed in a
polymer matrix. The chromophore/polymer matrix is then heated above the glass
transition temperature of the polymer matrix in the presence of a strong electric
field. Heating the system above the polymer’s glass transition temperature allows
the chromophores to align in response to the applied electric field and create a non-
centrosymmetric distribution. The system is then allowed to cool in the presence of

the electric field, retaining the alignment in the bulk sample.
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2.2 Multipolar systems

Another class of materials whose hyperpolarizability response is under investi-
gation is molecules with multi-dimensional substitution patterns.[7, 8] Often, the
multi-dimensional molecules do not possess a permanent dipole moment, precluding
the use of a dc electric field to align the molecules in the bulk sample. Elimination
of the center of symmetry in collections of multi-polar molecules can be achieved
through the use of optical poling methods. One such molecule of interest is ethyl
violet, an octupolar triphenyl based para-substituted cation. Zyss et al. have been
able to achieve a hyperpolarizability response of between 510 and 580x1073° esu in
ethyl violet after optical poling.[36, 37]

Progressing beyond an effectively one-dimensional model opens up a wealth of two-
and three-dimensional chemical possibilities. One must also keep in mind that, at this
time, the goal of the study of multi-dimensional chromophores is not necessarily to
maximize the response, but to eliminate some of the problems associated with the
linear molecules, such as disruption of crystallization due to dipolar aggregation, the
necessity of using electric fields to achieve parallel alignment of the molecules, limits
on the electrooptic applications due to the anisotropic structure of the material, and
the requirement that the modulating field and optical beam both be parallel to the
common crystalline and molecular axis.[7, 8]

One way of understanding and predicting the nonlinear optical behavior of a
molecule is to develop models that relate the substitution pattern on a molecular
skeleton to the optical response that is generated by the potential field induced by
those substituents. When the chemical substituents of the molecule lie along the same
axis, the responses due to the internal field created by these substituents are domi-
nated by a single component. Because the responses are essentially one-dimensional,
a direct relationship between the internal field and the hyperpolarizability response
can be derived. For a more complicated, multi-dimensional substitution pattern, the
responses due to the internal field are no longer dominated by a single component. In
order to account for the multi-dimensional nature of the substitution pattern, the ex-

pansion of the energy of the molecule is done in its full tensorial form. A relationship
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similar to the one-dimensional one can then be found for any substitution pattern.
The development of the generalized model for the hyperpolarizability response can

be found in detail in chapters 3 and 4.

2.3 Optical poling

In order for a material to exhibit an odd-order response such as 3, the mate-
rial cannot be centrosymmetric and/or a non-centrosymmetric distribution in the
bulk material must produced. Traditionally, quasi one-dimensional, rod-like, linear
molecules that possess a permanent dipole moment have been used in applications
because the dipole allows the non-centrosymmetric distrubution of molecules in the
bulk sample to be created using a dc electric field.

For a multi-dimensional substitution pattern, such as the octupolar substituted
benzene of Figure 2.1, the molecule may no longer possess a permanent dipole mo-
ment and thus a dc electric field can not be used to achieve molecular alignment.
Optical poling methods have been developed that allow for the center of symme-
try of the bulk sample to be broken, even in molecules without a permanent dipole
moment.[37, 21, 7, 8] The optical poling methods uses interference between one-
and two-photon absorption processes to discriminate between molecules based on
molecular orientation. In other words, only molecules in certain orientations within
the sample will be excited by the incoming light beams creating orientational hole
burning conditions. The excited molecules then undergo relaxation through some
photo-induced isomerization, intramolecular, or intermolecular vibrational process,
resulting in a distribution of molecular orientations that differs from the one present
at the start of the optical poling process.

As an example, we will start by defining the orientation of a Dj3;, type molecule by
an angle ¢ (Figure 2.1). Then let us assume, for illustrative purposes, that the possible
orientations of the molecules in the sample are evenly distributed (Figure 2.2). Let
the excitation by the write beams only effect those orientations of ¢ between ¢; and
9. This subset of molecules will then relax, resulting in a distribution of the relaxed

molecules similar to that of the initial configuration. The new overall distribution of
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Figure 2.1: Sample D3, molecule defining the angle ¢ used to discriminate between
the various orientations of the molecule.

A

distribution

Figure 2.2: Plot of relative abundance vs. orientation angle, ¢ for a evenly distributed

sample.

orientations will have a dip in the area between ¢; and s (Figure 2.3).

2.4 The write field tensor

Optical poling breaks center of symmetry in the sample through a multiphoton
absorption process described by the write field tensor, a time-averaged tensorial prod-
uct of optical fields, <E2“’* ®EY® E“’>t. [37, 21, 36, 8] The combination of optical
fields on the sample takes advantage of an interference pattern created by a combi-
nation of one and two photon absorption processes (see Figure 2.4). The power of

the incoming light beams is chosen so both absorption processes of Figure 2.4 would
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distnibution

Figure 2.3: Plot of relative abundance vs. orientation angle, ¢ for the sample after
having undergone the hole-burning, optical poling process.

2

Figure 2.4: Schematic of the the one and two photon absorption processes involved

in optical poling.
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lead to equivalent population transfers.

Examination of how the optical fields can interact to produce the necessary inter-
ference patterns can be achieved by considering the electric field components of the
impinging optical fields. A general form of the electric field vector of the incident
optical field is

E(7,t) = (E1éy + Eaéy) e@Fr—it), (2.2)

where F; and F, are the complex amplitudes of the vector in the directions é; and
€2 respectively, k is the wave vector, 7 is the direction of propagation, and w is the
frequency.[38] There are two important concepts in considering the effects of the write
field tensor,

(B*" @ E* @ E¥) (2.3)

.
on the sample. First, the time average of eq. 2.3 must be non-zero. Second, coupling of
the three electric field vectors of the optical fields must have the symmetry components
required for interaction with molecules of corresponding symmetry.

To determine the conditions necessary for optical poling we will start by consid-
ering two fields with arbitrary frequencies, w; and ws. The product of the fields of

eq. 2.2 in eq. 2.3 is,
Ew2)+ ® Ew) ® Ew) — g*e(—z'l'g’wz.m—iwzt) Q B‘e(iﬁwlf—iwlt) Q B‘e(z’k’wl.F—iwlt), (2_4)

where A and B are the vector components of the electric component of the optical
fields, (E£w2)€1 + E§w2)€2) and (E{wl)él + E§w1)€2) respectively. Collecting the spacial
and temporal exponential terms of eq. 2.4 expresses the equation in a form where the

time average and spacial effects of optical poling can be investigated individually:
Ee) @ B @ B0 = i @ B B R T2 (g5)

The first condition that must be met in order for the combination of laser beams
impinging on the sample to have a net effect is that the time average of the write
field tensor (eq. 2.3) must be non-zero.[37, 36, 7, 8] Only the second exponential in

eq. 2.5 concerns time. Recalling Euler’s relations for e’® and that it is the real part of
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eq. 2.5 that makes up the actual electric component of the optical field, the temporal

contribution to optical poling is,
(B @ E“' @ E*'), o cos [(we — 2wy )1]. (2.6)

The time average of eq. 2.6 is zero except when wy; = 2w;, as the case here (see
Fig. 2.4).

Each of the optical electric fields of eq. 2.3 interacting with the sample are vectors
of the type of eq. 2.2, i.e., first rank tensors with J = 1. Coupling three first rank J
= 1 tensors together results in the formation of a third rank tensor with J = 0,1,2,
and 3 spherical components. The presence of J = 3 components in the interference
pattern created by the vectorial optical fields can interact with the J = 3 components
of the nonlinear response of the sample. For example, a D3, molecule, such as that
seen in Figure 2.1, does not possess a permanent J = 1 dipole moment vector. The
absence of a J = 1 component of the optical response precludes the use of a J =1 dc
electric field to achieve alignment of the molecules. These D3, molecules do, however,
possess J = 3 octupolar components in their nonlinear responses. The presence of J
= 3 response components in the molecule allows for an interaction with the J = 3
components of the interference pattern created through interaction of the three J =
1 components of the optical fields.

To understand how the interference of two incident optical fields can induce a
hyperpolarizability in a bulk sample, consider how the spacial dependence of the

incoming optical fields is modulated,

(B** @ E* @ B*) o cos [( 2k, — kay )7 (2.7)

spacial

This is obtained following the same procedure used in eq. 2.6 and using the knowledge
that ws = 2w;. As an example of how the vector portions of eq. 2.2 couple, we will
consider the example of a simple planar molecule oriented such that it lies in the zy
plane with the  axis being an axis of two-fold symmetry, and such that the molecule
possesses only [, and (,,, response components (similar to an example provided by
Zyss and Ledoux in ref. [8]). For this example, the J = 1 and J = 3 irreducible tenso-
rial spaces are spanned by %X ® ()2 X+Y® }7) and i)? ® (X" X -3V ® }7'),
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respectively, where X and Y are vectors in the z and y directions. We will first con-
sider circularly polarized light with both E** and E“ having the same handedness,
for example, right-handed polarization. If we take the vector portion of eq. 2.2 to be
E=E ()Z + if}), then the product eq. 2.3 becomes

(B @B 0E) =E*E)YXe(XeX+VaY), (2.8)

which has the same form as the J = 1 irreducible component of the hyperpolarizability.

Consider instead, two incoming circularly polarized beams with opposite handed-
ness, for example, E() = E(v) ()2' - 217) and E@) = E@ ()Z' + 7,}7) Eq. 2.3 now
becomes

(B @E'@E) =E*E)Xe(XeX-3YeY), (2.9)

which has the same form as the J = 3 irreducible component of the hyperpolarizability.
This simple example illustrates the use of an interference pattern of two incident

optical fields in creating the irreducible tensor components of the hyperpolarizability.
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Chapter 3

Generalization of the internal
potential model to multi-polar

nonlinear optical chromophores

Work done in collaboration with Professor Joseph Zyss

Ecole Normale Supérieure de Cachan, Cachan, France

3.1 Introduction

There are two main aspects to the design of organic materials for second-order
nonlinear optical applications. The first is the design of the nonlinear optical chro-
mophore. The second is the construction of a macroscopic sample in which these
chromophores are arranged in a non-centrosymmetric manner. Construction of a
chromophore typically starts with a centrosymmetric conjugated molecule such as
benzene, stilbene, or a polyene. The symmetry is then broken by attaching elec-
tron donor and acceptor substituents. In most cases, this substitution induces a
substantial permanent dipole in the molecule. An advantage of this dipole moment

is that it allows macroscopic alignment to be induced via an external electric field,



19

A A X
© 0F L
y
D A D A
a) b)

Figure 3.1: Dipolar and octupolar substitution patterns for benzene. A and D repre-
sent, electron and donor substituents, respectively.

as in corona poling.[35] However, the macroscopic polarization of the resulting ma-
terial leads to long-term stability issues.[8] A number of approaches are being used
to address these stability issues, including cross-linking of a host polymer and the
attachment of the chromophore as a side chain to the host polymer. An alternative
is to create an acceptor-donor substitution pattern, such as the octupolar substituted
benzene shown in Figure 3.1(b). This type of octupolar substitution pattern does not
induce a permanent dipole moment in the molecule, but it does lead to a substan-
tial hyperpolarizability.[7, 8] Although the lack of a dipole moment precludes corona
polling, optical polling techniques can be used to achieve macroscopic alignments.[7, 8]
Indeed, optical poling may have advantages for the construction of novel materials in
which the optical susceptibilities are modulated with micron resolution. Construction
of such materials is an interesting design problem since both the linear and nonlinear
susceptibilities may be modulated and these modulation patterns may be intimately
coupled. In designing chromophores for this new class of materials, we can take ad-
vantage of the flexibility afforded by the large number of available electron donor
and acceptor substituents, the number of substitution sites on a chromophore such as
benzene or stilbene where these may be placed, and the wealth of possibilities opened
up with two and three dimensional substitution patterns. To take full advantage of
this flexibility, it is useful to understand the structure/property relationships and here
these are explored using semi-empirical quantum chemistry.

In constructing a model for the structure/property relationships, it is useful to
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be able to continuously vary the strength of the electron acceptors and donors. Two
general schemes are currently in use. In one scheme, the acceptors and donors are
viewed as applying an internal electric field to the central conjugated unit. This
scheme was recently used to provide a unified description of the linear and nonlinear
susceptibilities of push-pull polyene systems.[10] This unification was achieved by

writing the energy, W, of an unsubstituted polyene in an electric field as
W =—a(E)E*=—a(0) E* + 5(0) E* +v(0) E*, (3.1)

where «a(F) is used to indicate that the polarizability is a function of the applied
electric field. It follows that,

0p (E')
OF"

_ Oa(E) _
OF' ’

E'=FE

p(E) =

v(E) =

(3.2)

Marder treated the acceptor and donor of a push-pull polyene system as applying an
internal electric field to the central polyene, with the solvent serving to reinforce this
internal field.[10] The linear and nonlinear susceptibilities where then shown to obey
eq. (3.2), with E being the internal electric field.

The second scheme commonly used to continuously vary the strength of electron
acceptors and donors is to view the acceptor or donor as perturbing the energy of the
carbon atom to which it is attached.[39] This second scheme is more convenient for the
current study. In push-pull polyenes, the optical susceptibilities lie primarily along the
long axis and thus, the one dimensional approximation of eq. 3.1 is sufficient. For the
substituted benzenes under consideration here, or other multidimensional substitution
pattern, the susceptibilities are not dominated by any one tensor component. While
it may be possible to use an internal electric field scheme to study these various tensor
components, the second scheme is more convenient since it allows us to easily consider
substitution effects at each of the benzenoid carbons.

Despite the complexity introduced by the large number of tensor components in
the second hyperpolarizability, a rather simple picture emerges in the limit where the
hyperpolarizability is linearly dependent on the strength of the acceptors and donors.

In the formalism of egs. 3.1 and 3.2, this linear regime may be viewed as that range
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of internal electric field F; where

Bijk = Yijri L1 (3.3)

We begin by characterizing this linear regime within the Hiickel, Pariser-Parr-Pople
(PPP) and intermediate neglect of differential overlap (INDO) quantum chemical
descriptions. INDO calculations performed on a variety of chromophores are then
used to determine how close these chromophores are to the linear regime of eq. 3.3.

We then discuss the extension to nonlinear effects and summarize the results.

3.2 Internal Potential Model

The model developed here extends the one-dimensional scalar-like internal field
model of Oudar to multipolar systems.[22] In extending the model, we continue
to view the molecule as a skeleton to which electron-acceptor/electron-donor sub-
stituents have been attached. These substituents exert an effective potential on the
skeleton which we will refer to as the internal potential. This internal potential per-
turbs the skeleton and accounts for the hyperpolarizability of the total, or “dressed”,
system. For instance, if we assume the system to be essentially one-dimensional, as in
Oudar’s restricted approach, then the internal potential can be viewed as the source
of an internal electric field applied along the x axis, F,. Under later illumination, the
skeleton experiences both this internal field, F}, and the external electric field of the

laser, E,, such that the total field applied to the skeleton is
F) = F, + E, (3.4)

The energy, W, of the skeleton in the total field of eq. 3.4 is given by,

W = WO - Msz(tOt) - %O‘zzFx(tOtP - %BzszagtOt)s - %’Yxmme(tOt)ll (35)

x

where Wy is the energy of the skeleton in zero field, and u, a, § and 7 are the
susceptibilities of the skeleton. In egs. 3.6-3.9, we assume a centrosymmetric skeleton,

such that p and g of the skeleton are both zero. The susceptibilities of the dressed
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system may be obtained by substituting eq. 3.4 into eq. 3.5,

W = Wo = oy = L GaaBr? = 3 Pane B = (e’ (3.6
Qpy = Qg Vasae = Vraza (3.7)

T (33)

Brzz = 3Vawaa b (3.9)

(Throughout this paper, we will use a bar to denote properties of the dressed system,
as compared to those of the skeleton.) We also ignore terms that are higher than
linear order in F,. This assumption of linear response with respect to the internal
potential is discussed in more detail below.

Note that according to eqgs. 3.8 and 3.9, even rank tensors & and 4 are unchanged
at first order in F,. The odd-rank tensors fi and § are both proportional to the
internal field, F,, with proportionality constants that depend only on properties of
the skeleton. This model therefore predicts that the ratio 3/ will be the same for
all chemical substitutions of a given skeleton. Furthermore, this ratio can be derived
from the susceptibilities, o and +, of the skeleton.

In order to generalize this model so as to allow for the description of multipolar
systems, we must take into account the full tensor character of both the internal
potential and the resulting hyperpolarizability. While we will retain the view that
the substituents apply an electrostatic potential to the skeleton, we will use a more
general expanded form for the internal potential,

oo J

O(r,0,0) = > Virivi(0,9) (3.10)

Jj=0m=—j
(See Appendix 3.9.1) The j = 1 terms of eq. 3.10 are equivalent to application of
a uniform electric field to the skeleton, with the coefficients, V7, being the electric
field expressed in spherical tensor notation. Although the j = 1 term is sufficient for
the one-dimensional model summarized above, multipolar systems require terms with
j # 1, which can not be modeled as an internal electric field. Consider, for instance,
the octupolar substitution pattern of Figure 3.1, which applies an internal potential

corresponding to j=3.
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In eq. 3.5, the energy of the skeleton is expanded as a power series in the total field.
This may be generalized to the internal-potential model by expanding the energy as

a power series in the coefficients, V7 of eq. 3.10.

W = Wo—zxgnwn— - Z ATEATCH (3.11)
j J,J sy
1
- g Z Xir,LJT,Y‘Z' m! VT‘Z?. V,,% Vm
g
b
1 ] j, J” =111
- Z Z X'n,l r;z’ m! m!! Vm Vm’ Vmu me
.
T

where the x’s are generalized susceptibilities of the skeleton. Those terms of eq. 3.11
for which all j’s are equal to 1 are equivalent to the expansion of eq. 3.5, with the
susceptibilities transformed from Cartesian to spherical tensor notation. For multi-
polar systems, the internal potential has components with ;7 # 1, and this introduces
generalized susceptibilities which do not occur when the energy is expanded in the
presence of an electric field. The x’s may be defined in terms of energy derivatives,

for example,
A ) 1 84 W

7.7 3] ]

X / " m = - - ] =17 o
m m ,m m 3! aVT‘TZL aVT‘erI aVT‘Z-LH aV’IgL”,
By analogy to eq. 3.4, the potential experienced by the skeleton is a sum of the

(3.12)

external potential due to the laser, (V,fb)ewt, and the internal potential due to the

chemical substituents, (V%)mt
VT‘ZL _ (V%)ewt + (VT‘ZL)'mt (313)

As with eq. 3.6, the susceptibilities of the dressed system may be obtained by substi-
tuting eq. 3.13 into eq. 3.11, and extracting the coefficient of the appropriate powers
of (Vj)ext. Terms that are linear in the external potential give the permanent elec-
trostatic moments of the dressed system. For instance, the coefficients of (V1)*,
(Vn%)m and (V,i)ewt yield the permanent dipole, quadrupole and octupole moments of
the dressed system. Similarly, the susceptibilities with respect to an applied electric

field are obtained from the coefficients of the appropriate powers of (leb)ewt. Just as
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in the one dimensional model of eq. 3.6, we retain only up to linear terms with respect
to the internal potential. This thereby provides a recipe for relating the properties of

the dressed system to those of the skeleton and the internal potential. For example,
_1,1,1
Xm,m’,m”’
int

to obtain the first hyperpolarizability, which is related to we extract the

. ) 3 . . . ,
coefficient of ((V,,ll)ew ) and retain up to linear terms in (V)
' .
_1,1,1 1,1,1 3! 1,1,1,5 i\t
XTI,L,T,n’,m” = er,L,;n’,m" + E E Tr,l,;n’,{m”,m’” (V,,flm) (314)
. j’mlll

This is a generalization of eq. 3.9 that allows for both a multipolar internal potential

and includes all tensor components of the susceptibility. Eq. 3.14 may also be written

as
X1,1,1 .
~1,1,1 1,1,1 m,m/ ,m" i\
Xn;,,;nl,mu = er;,r,n',m” + Z —_— int (Vrfz”’) . (315)
j,m!" 0 (VT'ZLHI)

In analogy to eq. 3.6, where v is the derivative of 8 with respect to the field, the
derivative in eq. 3.15 is related to v if j = 1 and to a generalized susceptibility if
J#1

Equations 3.11 through 3.15 represent a formal generalization of the internal po-
tential model to multipolar systems, providing a means for obtaining the properties
of the dressed system from the properties of the skeleton and the internal potential.
However, due to the large number of tensor components in both the internal poten-
tial and the generalized susceptibilities, it is useful to develop a systematic means,
readily connected to symmetry reductions, to summarize the relevant relationships
for particular skeletons.

A convenient representation of the internal potential is obtained by recognizing
that the molecular energy is most sensitive to the value of the potential at the atoms.
Indeed, for the quantum chemical models used in section 3.3, the Hamiltonian contains
only the value of the potential at the atomic sites. The internal potential for the
benzene skeleton can then be represented by its value at each of the six carbon

atoms. These six degrees of freedom may be arranged in vector form,

Vo= (VI VT VT VT VI Ve, (3.16)
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where V™ is the the value of the potential at the i'" site. Since, in relating the
properties of the dressed system to those of the skeleton, we retain only up to linear
terms with respect to the internal potential, it is convenient to rewrite eq. 3.15 in a
manner that emphasizes this linear relationship. This may be done by arranging the
tensor components of the susceptibility into a column vector. For instance, the 27
tensor components of the first hyperpolarizability may be arranged into a vector .

Equation 3.15 may then be written,

B =p8+LV, (3.17)
where L is a matrix with elements defined as,
9P
L, = — 3.18
»J a‘/;_mt ( )

Equation 3.17 provides a linear relationship between the susceptibility of the
dressed system and the internal potential. The linear response matrix, L, is a func-
tion only of the skeleton, and completely specifies the linear response of the molecule.
Below, we use quantum chemistry to calculate the matrix L. For the benzene skele-
ton, L is a large 27 by 6 matrix and we will consider two ways to extract the relevant
information. The first is an analysis based on the molecular symmetry of the skele-
ton. The second is singular value decomposition (SVD), a numerical approach that

summarizes the information contained in L.

3.3 Quantum Chemical Calculations

The linear response matrix, L of eq. 3.17, will be calculated using three quantum
chemical models, Hiickel theory, PPP (Pariser-Parr-Pople) theory, and INDO (In-
termediate Neglect of Differential Overlap) theory. In all three models, the benzene
molecule is taken to lie in the (x,y) plane with Dg, symmetry and bond lengths of
1.41A and 1.10A for the C-C and C-H bonds, respectively.

Both the Hiickel and PPP models consider only the 7 electrons. The form of the
m-electron Hamiltonian is,

Y

Hbenzene = Zeunu + Z t/,t,l/aLg'aVG' + z GLUGWT"M (nu - 1)
M UtV V0
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+ 2 M (1, — 1) (n, — 1), (3.19)

u#tv
where aLa (au0) creates (destroys) an electron with spin o in the p, orbital on the p'"
carbon atom, n, = >, Wa,w is the number operator for electrons on carbon p, €, is
the on-site energy, and the sums are over the six carbon atoms of benzene. Transfer
matrix elements, ¢,,,, are included only between adjacent carbon atoms.
Hiickel theory ignores Coulomb interactions between electrons and so includes
only the first two terms of eq. 3.19. The hyperpolarizability predicted by Hiickel

theory depends only on the molecular structure and the transfer integral, £, ,, between

s Lugws
adjacent carbons. Since the results will be compared to those of INDO theory, and the
hyperpolarizability is sensitive to the energy of the lowest excited state, the Hiickel
transfer integral is set to -2.65eV. Using this value, the lowest optically allowed state
obtained from Hiickel theory agrees with that of INDO theory.

PPP theory includes Coulomb interactions between electrons via the last two
terms of eq. 3.19. The calculations presented here use the Ohno parameterization for
the electron-electron potential,

14.397
q/u,,,[eV] =

\/(1141.?2967)2 + (TMU[A])Q |

The ground electronic state is obtained from Hartree-Fock theory, and the excited

(3.20)

states are obtained from singles-configuration interaction (S-CI) theory. The S-CI

calculations include all molecular orbitals. The transfer matrix element, ¢,,, between

2
adjacent carbons is set to -2.52eV, such that the lowest optically allowed state agrees
with that obtained from INDO theory.

INDO theory includes both ¢ and 7 electrons and includes Coulomb interactions
between electrons. Unlike the above two models, the INDO model has been pa-
rameterized such that the Hamiltonian may be obtained for any organic molecular
structure[27]. The electronic states are obtained in the same manner as for PPP the-
ory. Hartree-Fock theory is used for the ground state and S-CI theory with a complete
set of molecular orbitals is used for the excited states. Since INDO is parameterized

for arbitrary organic structures, we also use INDO theory for the calculations on the

substituted benzene molecules presented below.
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The linear response matrix, L of eq. 3.18, is obtained by adding the internal
potential of eq. 3.16 to the Hamiltonian,

H = Hpenzene + z V,jntnu (321)
u

For Hiickel and PPP theory, n, is the number operator for the p-orbital on the u"
carbon atom. For INDO theory, we consider two possibilities for the number operator.
The first is to use the number operator for just the p-orbital on the u** carbon, which
is consistent with the orbital perturbation argument in Appendix 3.9.1. The second
choice is to use the number operator for the total number of valence electrons on the
pt" carbon, which corresponds to placing the entire atom in an electrostatic potential
with value V™.

The hyperpolarizability, in Cartesian coordinates, is calculated using a sum over
states expression

(0] i [n) {n] Ap; [m) (m| e |0)
Bijk = 5 Z > o : (3.22)
© m,n#0 On=~0m

where |0) is the Hartree-Fock ground state, |m) and |n) are S-CI excited states,
Apj = p; — {0 |u;] 0), Eop, is the difference in energy between the ground and excited
states, and p is a summation over all six permutations of the tensor indices. Eq. 3.22
is first evaluated in atomic units (energy in Hartrees, charge in units of e, and length
in Bohr radii), and then multiplied by 8.6392 x 10723 to convert to esu[11].

It is convenient to transform the Cartesian tensor of eq. 3.22 to a spherical tensor
representation. This is done via Clebsch-Gordon coefficients, as discussed in reference
[40]. The norm of § is taken as,

\5’\=\/%(6;{4) (823) 5 181= /> (81) (B4) (3.23)

J,M

where the sum is over all J and M. Due to Kleinmann symmetry [7, 8] in the non-
resonant response, only the J =1 and J = 3 components are non-zero.

The linear response matrix, L, is obtained by numerical evaluation of the derivative
in eq. 3.18, using central differencing with a step size of 0.001eV. The central difference

is evaluated for each of the internal potential values, Vji"t of eq. 3.16. For example, the
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derivative of the hyperpolarizability with respect to the first component of eq. 3.16

is,
0B _ BOV™ =h) — B(V{™ = —h)
GV o) , (3.24)

where h is the step size and 3(Vi™ = h) is the first hyperpolarizability evaluated with

an internal potential of magnitude h applied to site 1.

3.4 Symmetry Analysis

The quantum chemical methods described above yield a 27x6 linear response
matrix, L of eq. 3.17. The first approach we will use to extract information from L
is based on the molecular symmetry of the skeleton. In this approach, the tensors
and V are decomposed into components that transform as irreducible representations
of the Dg, point group of the benzene skeleton. For substituted benzenes, £ of the

skeleton is zero and eq. 3.17 becomes
B =LV. (3.25)

Since L is a property of the molecular skeleton, it transforms as the totally symmet-
ric representation, A;4. The product LV then transforms according to the symmetry
properties of V, since A;, ® I' =TI for any symmetry representation I'. Thus appli-
cation of an internal potential that transforms as symmetry representation I' induces
a hyperpolarizability that also transforms as I'.

To create symmetry-adapted forms of the hyperpolarizability tensor, we first define
a projection operator P! that, when applied to a function, retains only that com-
ponent of the function that transforms as the symmetry species I'. In other words,
P is the projection operator from the unrestricted tensor onto the irreducible subset
I. It is convenient to work with spherical tensors, 57,, such that the transformation
properties of 33, are identical to those of the spherical harmonic Y;}. The projection

operator P! is defined by its action on 37, as,

Pt = () SR S D) (3.20
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Table 3.1: Symmetry-adapted hyperpolarizability tensors and internal potentials for
the D¢, point group of benzene. The notation {3%, 53%,} indicates that any linear
combination of 3% and 32, will transform with the indicated symmetry. The internal
potentials are given as a normalized vector representing the value of the potential on
each of the six carbon atoms in benzene, V of eq. (3.16).

Hyperpolarizabilities
Symmetry J=3 J=1
A2u _ 53_ ﬁé
Blu @g + ﬂi_ii
B2u ﬂi:& — 55’ o
Elu {@%7@31} {ﬁllaﬁil}
E2u {637 632}

Internal Potentials

By, 7l -1,1,-1,1, 1]
E( [2,1,-1,-2,-1,1]
B 2200,1,1,0,-1,-1]
Eyq \/%1[2,—1,—1,2,—1,—1]
Ey, ﬁ£0,1,—1,0,1,—1]
Ay, Z11,1,1,1,1,1]

where h is the order of the group, d is the degeneracy of the symmetry species I'; R
labels the symmetry operations of the point group, x is the character for operation
R in symmetry species I, D(R) is the rotation matrix associated with the operation
R[41], and inv is 1 if R involves an inversion and zero otherwise. By applying the
projection operator to each of the components, 57;, we can determine all linear com-
binations of the 37, that transform as species I. The results are listed in Table 3.1.
A similar procedure yields the symmetry-adapted internal potentials of Table 3.1.
As was discussed above, since L of eq. 3.25 transforms as the totally symmetric
representation, A,, an acceptor-donor substitution pattern that causes the skeleton
to experience an internal potential of symmetry I', within the linear response ap-
proximation, induces a hyperpolarizability of symmetry I' in the dressed system. For
example, an internal potential with By, symmetry, corresponding to the octupolar
substitution pattern of Figure 3.1, will induce a hyperpolarizability response of By,
symmetry, B§ + B 5. Comparison of the symmetry adapted internal potentials and

hyperpolarizabilities reveals some general features. In Table 3.1 only the By, and E4,
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representations are present in both the symmetry-adapted hyperpolarizabilities and
internal potentials. Although it is possible to form hyperpolarizabilities that trans-
form as Ay,, Bo,, and Es,,, these will not arise from a linear response with respect to
an internal potential applied to the carbon atoms of benzene. Similarly, the absence
of g-symmetry hyperpolarizability tensors in Table 3.1 indicates that application of
the g-symmetry internal potentials, A;;, and Eyg, will not induce a hyperpolarizabil-
ity. This is as expected, since application of a g-symmetry internal potential does not

remove the center of symmetry.

3.5 Singular Value Decomposition

The symmetry analysis of the previous section reveals characteristic directions as-
sociated with the linear response matrix, L. Another approach to extract information
from the linear response matrix, L, is via singular value decomposition (SVD). SVD
is essentially the diagonalization of a rectangular matrix and decomposes the 27x6

matrix, L into a product of three matrices
L =UTW! (3.27)

where U and W are unitary matrices with sizes 27x27 and 6x6 respectively. T is a
27x6 matrix that is zero except for the upper-left corner which contains a diagonal 6x6
matrix. Eq. (3.17) may be rewritten in terms of the output of the SVD factorization
as,

B=B+UTWIV. (3.28)

Eq. (3.28) can be interpreted as follows. The rows of W give characteristic directions
for the internal potential. A general internal potential V can be written as a linear
combination of these characteristic directions. This is accomplished by the matrix
multiplication, W1V, which returns a vector containing the projection of V onto the
characteristic directions. The elements of the diagonal matrix T give the magnitude
of the hyperpolarizability induced by an internal potential of unit magnitude applied

along each of these characteristic directions. Finally, in the multiplication by U,
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the columns of U give the distribution of the response among the various tensor
components. In particular, application of an internal potential with a form equal to
the i** row of W' induces a hyperpolarizability with norm T; ; and hyperpolarizability
components given by the i** column of U.

For the benzene skeleton, the characteristic directions for the internal potential
are determined by symmetry, and the rows of W are identical to the symmetrized
internal potentials of Table 3.1. The columns of U indicate that application of a By,
potential induces a hyperpolarizability of form Bg’ + 33 3, just as in Table 3.1. For an
Ey, internal potential, the columns of U indicate that 5} = —3% and i = —3%.
Note that By, potentials induce m = 3 components, while E;, potentials induce
m = 1 components.

Table 3.2 shows the magnitude of the hyperpolarizabilities induced by Bi, and
E., potentials, as given by the diagonal elements of T in eq. 3.28. The three quantum
chemical models are shown in order of increasing complexity. As we go from Hiickel to
PPP theory, we stay within a 7 electron model but add Coulomb interactions between
electrons. Addition of these Coulomb interactions reduces the B, response by 66%
and the E, response by 92%. The ratio of the By, to Ei, response is then raised
from 3 in Hiickel theory to 12 in PPP theory. In going to INDO theory, we include
the o bonding network as well as the 7 electrons. As discussed in Section 3.3, there
are two ways to apply an internal potential within INDO theory. The first is to apply
the potential to the 7 orbitals only. For this case, the only difference between the
INDO and PPP models is the explicit inclusion of the sigma electrons. This reduces
the By, response by about 30% and the E1, response by only 3%, thereby lowering
the By, to Ey, ratio to about 7. Finally, Table 3.2 shows the results when the internal
potential is applied to both the o and 7 electrons of the INDO model. Relative to
the 7 electron potential, the By, and E}, responses are lowered by 40% and 15%,
thereby lowering the B, to Ey, ratio to about 5. Since the INDO model is the most
complete, we take the range 5 to 7 as a reasonable quantum chemical estimate of the

B, to E, ratio.
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Table 3.2: Results of the SVD analysis on the benzene skeleton, using the quantum
chemical models discussed in Section 3.3. The values give the magnitude of the
hyperpolarizability (in esu’s) induced by an internal potential of unit magnitude (in
volts), along each of the symmetry directions in Table 3.1. For the INDO model,
results are shown with the internal potential applied to the entire atom and to the
just the 7 orbitals.

Hyperpolarizability Magnitudes, from the matrix T

Hamiltonian Bi, Ei.
Hiickel 4.38 1.79

PPP, S-CI 1.47 0.148

INDO, S-CI,7 orbitals only 1.02 0.143
INDO, S-CI, entire atom  0.615 0.121

3.6 Nonlinearity Within the Internal Field Model

Both the symmetry and SVD analyses assume linear response, such that the op-
tical susceptibilities and other properties of the dressed system are linearly related to
the internal potential (egs. 3.25 and 3.28). In this section, we stay within the inter-
nal potential model, but consider breakdown in the linear response approximation.
This is done by examining the hyperpolarizability as a function of the strength of the
internal potential. The potential is applied along the symmetry-adapted directions
of Table 3.1. Note that internal potentials of gerade symmetry do not remove the
center of symmetry, and so do not induce a hyperpolarizability.

Figure 3.2 shows the norm of the hyperpolarizability induced by internal potentials
applied in the By, symmetry direction. Table 3.1 indicates that the linear response
with respect to this internal potential will be of the form 2 ;+ 32 5. This holds also for
arbitrary strength internal potentials. (The perturbed system has D3, symmetry, and
32 3+ 534 is the only tensor that transforms as the totally symmetric A{ representation
of the Dg; point group.)

The three quantum chemical models yield similar results. For all three models,
the response rises to a maximum between approximately 2.5 and 4eV. As expected
from the results of the linear response analysis in Table 3.2, the predictions from the
Hiickel model are substantially larger than that of the PPP or INDO models. The

hyperpolarizability in Figure 3.2 increases nearly linearly with internal potential up to
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Magnitude of B(x 10 esu)

T T T T T T T T
1 2 3 4 5 6
V (eV)

Figure 3.2: Norm of the hyperpolarizability induced by an internal potential of By,
symmetry for the Hiickel (squares), PPP (circles), and INDO (triangles) Hamiltoni-
ans. V is the root mean square (RMS) magnitude of the potential. For all V, the
hyperpolarizability tensor has By, symmetry, 35 + (33,.
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about 2eV, corresponding to an internal potential with magnitude 0.8eV alternating
from atom to atom according to the internal potential of Table 3.1. This places
the validity of the linear response regime at about 0.8eV applied to each atom, or
equivalently, a difference of 1.6eV in the potential applied to adjacent carbon atoms.

The existence of a maximum in Figure 3.2 may be rationalized by analogy to a sim-
ilar behavior seen in push-pull polyenes[20]. In those systems, increasing the strength
of the acceptors and donors enhances the change in permanent dipole moment upon
excitation to the charge-transfer states, while simultaneously decreasing the transition
moments to these states. Since these two factors have opposing effects on the hyper-
polarizability, a maximum response is obtained for an intermediate acceptor-donor
strength. Although there is no permanent dipole moment for the ground and excited
states of a benzene perturbed with a By, potential, it seems likely the maximum still
results from a balance between the amount of charge being displaced on excitation
and the transition moment to these charge-displaced states.

The hyperpolarizability induced by an internal potential with E;, symmetry is
shown in Figures 3.3 and 3.4. The total magnitude of the response is shown in Fig-
ure 3.3. In the linear response analysis of Table 3.2, the hyperpolarizability predicted
by Hiickel theory is a factor of 12 larger than that of PPP or INDO theory. Figure 3.3
shows that this discrepancy becomes even larger for strong potentials. Apparently,
inclusion of electron-electron interactions has a large effect on the predicted hyper-
polarizability and so Hiickel theory is not adequate for calculations on these systems.

Figure 3.4 shows the various tensor components of the hyperpolarizability induced
by an Fy, internal potential. The slopes near zero potential are as expected from the
linear response results in Table 3.2. For the m = 1 components that are allowed in
linear response, 53, and (1, the linear regime extends to about 5¢V. The dominant
nonlinear effect is the appearance of m = 3, 33, components. Although these are not
allowed in linear response, they grow in nonlinearly and become comparable to the
other components above about 2eV. At this magnitude, the carbon atoms at opposite

sides of the benzene ring differ in potential by up to 2eV.
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Figure 3.3: Norm of the hyperpolarizability induced by an internal potential of Ey,
symmetry for the Hiickel, PPP, and INDO Hamiltonians. The insert is a detail for

small V, showing that the slopes near V=0 agree with the linear response results of
Table 3.2. Notation is as in Figure 3.2.
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Magnitude of B (x 10”° esu)

V (eV)

Figure 3.4: Decomposition of the INDO results of Figure 3.3 into its spherical tensor
components. The insert is a detail for small V. Note that the 33, component is
zero in the linear response analysis, and here grows in quadratically with V. The
filled squares are the total response, filled circles are the total J = 3 components,
the empty circles are the J = 3,m = 3 components, the crossed circles are the
J = 3,m = 1 components, the filled triangles are the total J = 1 components, and
the crossed triangles the J = 1, m = 1 components.
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Table 3.3: Results from INDO calculations on substituted benzene molecules. In the
notation for substitution patterns, such as (X, H, H, H, H, H) for monosubstitution,
the parenthesis enclose the substituents attached to each of the carbon atoms in order
around the ring. The units for the hyperpolarizability are 10720 esu.

Monosubstituted
- 3) 3) 1), B8 [Bmes)l
Substituent 1Bl B 1BL1 181l O] \B(,mn—=1)l
+1
1) X = NO» 6.55 3.73 1.22 2.45 2.01 1.36
2) X =CN 0.956 0.487 0.209 0.419 2.00 1.34
3)X=F 0.570 0.237 0.146 0.291 1.99 0.728

4) X = CHs 0.614 0.292 0.178 0.266 1.49 0.912
5) X = OCHs 1.45 0.653 0.355 0.705 1.99 0.827
6) X = OH 1.33 0.590 0.327 0.653 2.00 0.808
7) X = NH» 2.52 1.06 0.643 1.28 1.99 0.740
ortho Disubstituted, (H, X, X, H, H, H)

Comparison to monosubstituted

(1) 3) .. ), .

substituent 8] BQ) B ) EL m=al o _Gaile e
188 Bem=nl 188 mono B [mono

1) X = NO2 3.19 0.156 1.59 1.17 0.735 0.0790 1.30 0.477

2) X = CN 0.653 0.123 0.199 0.398 2.00 0.276 0.952 0.952

3) X=F 0.856  0.00553 0.271 0.542 2.00 0.00913 1.86 1.86

4) X = CH3 0.822 0.0131 0.319 0.486 1.52 0.0225 1.79 1.83

5) X = OCHgs 2.21 0.0338 0.680 1.41 2.07 0.00995 1.91 2.00

6) X = OH 1.91 0.0786 0.604 1.21 2.00 0.0581 1.85 1.85

7) X = NH» 3.29 0.00768 1.06 2.07 1.96 0.00330 1.65 1.62

meta Disubstituted, (X, H, X, H, H, H)

Comparison to monosubstituted

: ®) @ g0 8L Bem=gl 183 as 1887 a1 183311
Substituent 1B 18551 1871 181l |ﬂ(is1)| Bm=1)l IB(fs)Imono \B(isl)lmcno IB(ill)\mana
1) X = NO2 9.30 6.35 0.769 1.54 2.00 3.69 1.70 0.628 0.628
2) X =CN 1.22 0.843 0.0743  0.149 2.00 5.06 1.73 0.355 0.355
3)X=F 0.861 0.525 0.138 0.275 2.00 1.71 2.21 0.946 0.945
4) X = CHs 0.964 0.607 0.191 0.243 1.27 1.96 2.08 1.08 0.913
5) X = OCHgs 2.21 1.41 0.308 0.614 1.99 2.05 2.16 0.867 0.871
6) X = OH 2.03 1.29 0.283 0.566 2.00 2.04 2.19 0.867 0.867
7) X = NH» 4.53 2.91 0.592 1.19 2.01 2.19 2.75 0.920 0.933

3.7 INDO Calculations on Specific Chemical Ac-

ceptor and Donor Substituents

This section reports INDO calculations for a variety of acceptor/donor substitu-

tion patterns on the benzene skeleton, using the approach discussed in Section 3.3.

3.7.1 Hyperpolarizabilities

Tables 3.3 and 3.4 show the norm of the hyperpolarizability for a variety of
substitution patterns on the benzene skeleton, which we will examine in light of

the above analyses. Table 3.3 compares monosubstituted systems with disubstituted
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Table 3.4: Results from INDO calculations on trisubstituted benzene molecules, us-
ing the notation of Table 3.3. Only |3| is reported since 33; are the only allowed
components.

trisubstituted (X, H, X, H, X, H)
Substituent B |5trz|/|ﬂr(ri)mo| |5trz/|(5$n::33)mon0|

1) X =NO, 117 2.10 3.13
2)X=CN  1.49 1.99 3.05
3)X=F 1.17 2.97 4.91
4)X =CH; 140 2.88 4.78
5) X = OCH; 3.18 3.03 4.87
6) X=0H 294 3.08 4.98
7)X =NH, 545 3.20 5.14

species, for both ortho and meta substitution. Para substitution is not included,
since such systems have a center of symmetry and so have no hyperpolarizability.
Assuming that the substituents can be viewed as altering the internal potential of the
carbon to which they are attached, the internal potentials of the various substitution
patterns can be written as linear combinations of the symmetry-adapted potentials of
Table 3.1. For instance, a unit internal potential for monosubstituted benzene can be
written in the vector notation of Table 3.1 as V.0 = [1,0,0,0,0,0]. This potential

can be expanded as:

1 2 w2 w1
Vinono = —=A1y + —E® + —_E® + —_B,, 3.29
N R Y v RV D R Y (3.29)
Similarly, the di-substitutions lead to,
1 R 3w, 1w 1 _u
Vortho = —= A1y + —=E@ +1/SBEY + — B + —E. 3.30
mo = gt gt t[gEw + Jgha gt (330

and

1 1 1 1 1
— Ay, +—EB9 + —EY B
V3T VB N7V e V7

The gerade internal potentials are centro-symmetric and so do not induce a hyper-

1
EY + -Bi,. (331

Vmeta = 3

polarizability. The hyperpolarizability then depends only on the relative amounts of
the two ungerade configurations. Assuming the hyperpolarizability depends linearly

on the internal potential, the hyperpolarizability tensor induced by a B, potential



39

exhibits only m=3 components, 33,, while an F}, potential induces only m=1 com-
ponents, 43, 8L;. In addition, for an Ey, potential, the norm of the J=1 components
is predicted to be twice that of the J=3, |3'|/|8%| = 2. This ratio is observed
for all molecules in Table 3.3, except those involving methyl substituents and meta-
dinitrobenzene.

According to eq. 3.30, the ortho internal potential has no B;, component, and so
the hyperpolarizability should reflect only the Ey, potential. The hyperpolarizability
resulting from an E, potential has, assuming linear response, only m=1 components.
In Figure 3.4, m=3 components are seen to result from nonlinear effects, and so the
magnitude of the m=3 components measures the degree of nonlinearity. For most
substituents in Table 3.3, the m=3 components are two orders of magnitude smaller
than the m=1 components, indicating that the nonlinearity is quite small. However,
for the nitro and cyano substituents, the m=3 components are nearly 10% those of
the m=1 components.

A convenient means of comparing the monosubstituted and disubstituted molecules
is by considering the effects of rotations on the m=3 and m=1 components of the hy-
perpolarizability tensor. Within linear response, the effects of the internal potential
are additive. Therefore, the ortho-substitution can be considered as the sum of a
[1,0,0,0,0,0] internal potential and a [0,1,0,0,0,0] internal potential. Since these two
potentials are related by a 60° rotation about the Cg symmetry axis of the benzene
skeleton, their contributions to the hyperpolarizability can be modeled by rotating
the hyperpolarizability of the monosubstituted system by 60° and adding the result-
ing tensor to the original, unrotated tensor. For a rotation by an angle ¢ about the
Cs symmetry axis, the tensor components transform as ™. For m=1, this is equiv-
alent to the transformation properties of a vector, and so we can use vector addition
to determine the expected ratio between disubstituted and monosubstituted species.
Addition of two unit vectors with a 60° angle between them yields a vector of length
V/3. Therefore, within linear response, the ratio of the hyperpolarizabilities for di-
and monosubstituted species, | ﬁfl) |ai/| ﬁfl) |mono, should be about 1.7. This it true to
within about 10% for all substituents except cyano and nitro, which deviate by up to

70%. These are the same two substituents that showed significant nonlinearity above,
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as measured by the magnitude of the m=3 components.

The meta disubstituted species may be treated in a manner similar to that of the
ortho, but with a rotation of 120° connecting the two contributing internal potentials,
[1,0,0,0,0,0] and [0,0,1,0,0,0]. Addition of two unit vectors with a 120° angle between
them yields a vector of length 1. Thus the ratio of the meta disubstituted species
to the monosubstituted species, |B(i?’1)|d,- /| ﬁfl)\mom, should be about 1 within linear
response. This it true to within about 15% for all substituents except cyano and
nitro, again confirming that these substituents lead to significant nonlinearity.

The m=3 components of the hyperpolarizability transform as e®? with respect
to rotation about the Cg axis. The 60° rotation associated with ortho substitution
therefore leads to an exact cancellation of the m=3 components of the hyperpolariz-
ability. This is consistent with the above analysis which concluded that the lack of
a By, component in the internal potential of eq. 3.30 prevents, in linear order, the
potential from inducing m=3 tensor components in the hyperpolarizability. For the
120° rotation associated with meta substitution, the m=3 components of the hyper-
polarizability add constructively, such that the norm of the m=3 components of the
hyperpolarizability, | ﬂf§|di /| 5§§§ mono, Should be 2 for linear response. The observed
ratios are within 10% of this value for most substituents. As expected based on pre-
vious measures of nonlinearity, the deviation is larger for cyano and nitro. Somewhat
surprisingly, the amino substitution deviates by the largest amount, 37%.

For the trisubstituted species of Table 3.4, the internal potential can be consid-
ered as arising from the addition of [1,0,0,0,0,0], [0,0,1,0,0,0], and [0,0,0,0,1,0]. These
contributions are related by 120° rotations, and the summation causes the m=1 com-
ponents to cancel and the m=3 components to add constructively. The lack of m=1
components is a general consequence of the Ds;, symmetry of the dressed system and
so applies even in nonlinear order. Since the m=3 components add constructively, the
norm of the hyperpolarizability of the trisubstituted species should be three times the
norm of the m=3 components of the monosubstituted species. However, the observed
ratio is much closer to 5 for all substituents, with nitro and cyano substituents giving
a ratio close to 3. Somewhat surprisingly, the expected ratio of 3 is obtained for the

ratio between the hyperpolarizability of the trisubstituted species and the norm of
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the J=3 components of the monosubstituted species.

In the above arguments, the m=3 (B;, symmetry) and m=1 (E;, symmetry)
components of the hyperpolarizability were compared between different substitution
patterns. Here, we consider the relative magnitude of the m=3 and m=1 components
for a given substitution pattern. The SVD analysis of Table 3.2 indicates that a
By, potential will induce a hyperpolarizability that is 5 to 7 times larger than an E,
potential of identical magnitude. This, combined with the decompositions of egs. 3.29-
3.31 allows us to predict the magnitude of the m=3 and m=1 tensor components of
the hyperpolarizability. For the mono-substitution potential of eq. 3.29, the ratio
between the By, and Fj, components is 1/ v/2. This, combined with the above ratio
of 5 to 7 suggests that the ratio of norms of the m=3 to m=1 components should
be between 3.5 and 5. However, the observed ratios are less than one. This suggests
that an Ey, potential induces a hyperpolarizability of roughly equal magnitude to
that induced by a By, potential of the same strength, in disagreement with the ratio

of 1/5 to 1/7 obtained from the SVD calculation.

3.7.2 Permanent Moments

In the 1-D model of egs. 3.8 and 3.9, application of an internal electric field to
the skeleton induces both a permanent dipole moment and a hyperpolarizability. The
ratio of these two quantities is then a constant that depends only on the skeleton.
Here, we consider the extension of this relation to multi-polar systems, by comparing
the permanent moments of the benzene skeleton with the hyperpolarizability. In cal-
culating the permanent moments, we consider only the charges due to the 7 electrons
of the benzene skeleton, since it is the 7 system that dominates the hyperpolarizabil-
ity. The octupole tensor of the 7 electron distribution is first calculated in Cartesian

coordinates,

Oijk = D QATi,AT},ATE,A (3.32)
A

where 7; 4 is the position of the A atom along the " Cartesian axis, and ¢4 is its
m charge. This Cartesian tensor is then transformed into spherical tensor notation

using the same method as was used in Section 3.3.
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Table 3.5: Comparison of the permanent moments of the 7 electron density with
the hyperpolarizability, as discussed in Section 3.7.2. Monosubstituted systems cor-
respond to the substitution pattern (X, H, H, H, H, H) and trisubstituted systems
correspond to (X,H,X,H,X,H).
Monosubstituted trisubstituted
0s=s| |0y |5 0s=s| |5

O,— %‘ ‘01 1‘ (O %‘

1) X = NO, 19.1 17.4 0.291  0.199 62.2 0.188
2) X = CN 8.22 8.67 0.0910 0.0691 23.8 0.0626
3) X 7.83 8.52  0.0503 0.0483 35.7 0.0328
4) X CH3 14.3 2.22  0.0340 0.170 56.8  0.0246
5)
6)
)

X=0CH; 21.2 432 0.0496 0.231 92.7  0.0343
X =O0OH 22.5 459 0.0424 0.201 96.5 0.0305
7) X = NH, 25.3 3.17  0.0694 0.569 109  0.0501

The permanent moments of the molecule based on the 7 electron density on the
six carbon atoms of benzene were determined and are shown in Table 3.5.[41] The
Cartesian permanent octupole moment is then transformed into spherical coordinates
using the same method as was used in Section 3.3. With the permanent moments in
spherical coordinate notation, we can compare the J = 3 and J = 1 components of
the permanent moments and the first hyperpolarizability responses.

Figure 3.5 shows the relationship between the permanent octupole moment of the
molecules versus the J = 3 component of the hyperpolarizability. Those molecules
which were shown to be linear in Table 3.3 (molecules 3 through 7) exhibit a good cor-
relation between the J = 3 component of the hyperpolarizability and the permanent
octupole moments. Figure 3.6 shows the relationship between the J = 1 component
of the permanent octupole moment of the molecule due to the presence of substituents
and the J = 1 component of the hyperpolarizability of the molecule. Unlike the case
with the octupole moments, we do not see the same type of correlation between these

values.

3.8 Conclusion

This chapter extends the one-dimensional, scalar-like internal field model of Oudar

to multipolar chromophores. The internal field of the one-dimensional model is re-
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Figure 3.5: Correlation of the norm of the hyperpolarizability with the permanent
octupole moment, for the trisubstituted molecules numbered 3 through 7 in Table 3.3.
The line is a least squares fit to a linear relationship.
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Figure 3.6: Correlation of the norm of the J=1 portion of the hyperpolarizability
with the permanent dipole moment for the monosubstituted molecules numbered 3
through 7 in Table 3.3.
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placed with a generalized internal potential, and this internal potential may induce
hyperpolarizabilities with a variety of tensor components. As in the one-dimensional
model, the properties of the substituted molecule are directly related to the properties
of the molecular skeleton, eq. 3.15.

The internal potential model assumes the hyperpolarizability and permanent mo-
ments are linearly related to the internal potential. An analysis based on symmetry
leads to symmetry-adapted internal potentials which, when applied to the molecular
skeleton, induce hyperpolarizabilities with the corresponding symmetry. For benzene,
two types of potentials, By, and E;,, lead to non-zero hyperpolarizabilities. The hy-
perpolarizability induced by a B;, potential has only m = 3 tensor components, while
that induced by a E;, potential has only m = 1 tensor components. An alternative
approach to analysing the linear response is through singular value decomposition
(SVD). The SVD analysis yields all of the information extracted from the symmetry
analysis, and in addition, predicts that a By, potential will induce a hyperpolarizabil-
ity that is 5 to 7 times larger in magnitude than that induced by an E;, potential of
equivalent magnitude.

By applying internal potentials of large magnitude to the benzene skeleton, we
can determine the point at which nonlinear effects become important. Nonlinear
effects become important when the potential between adjacent atoms differs by more
than about 1eV. For an Eq, potential, nonlinear effects introduce hyperpolarizability
tensor components with m = 3, whereas only m = 1 components are allowed in linear
response.

A series of substituted benzene molecules are used to test various predictions of
the internal potential model. For the substituents (F, CH;, OCHs, OH and NH,),
many of the predictions of the internal potential model apply. We will refer to these as
weak substituents. The substituents NO, and CN appear to be outside of the linear
response regime, and we will refer to these as strong substituents. Ortho substitution
corresponds to a pure E;, potential and so should lead to hyperpolarizabilities with
only m = 1 components. This is indeed seen for the weaker substituents, while the
stronger substituents do induce some m = 3 components. The assumption of linear

response also leads to specific predictions for the ratios between the hyperpolarizabil-
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ity induced by mono-, ortho- and meta- substitution on benzene. The predicted ratios
differ for the m = 1 and m = 3 components, since these have very different transfor-
mation properties with respect to rotation about the Cg axis of benzene. Again, the
predicted ratios are found to hold for the weak substituents but not for the strong
substituents. Linear response also predicts that the ratio between the J=3 compo-
nents of the hyperpolarizability and the permanent octupole moment of the molecular
skeleton should be a constant that depends only on properties of the skeleton. This
ratio is relatively constant for the weak substituents, but not the strong substituents.
So for the weak substituents, a number of the predictions of the internal field model
are found to hold for substituted benzene molecules.

Some predictions of the internal field model are not observed in the series of
substituted benzene molecules. For instance, the SVD analysis predicted that the
hyperpolarizability induced by a By, potential should be 5 to 7 times larger than that
for an E;, potential.Results for the substituted benzene molecules indicate that the
hyperpolarizabilities induced by these potentials have roughly equal magnitudes. This
suggests that predictions that rely on the relative magnitudes of the response, rather
than just the transformation properties of the various tensor components, may not be
reliable. Linear response also predicts that the ratio between the J = 1 components
of the hyperpolarizability and the permanent dipole moment should be a constant.
This is not observed to be the case.

In summary, the internal field model has been extended to multipolar chro-
mophores, and tested against explicit calculations on substituted benzene molecules.
The results indicate that for weak acceptor-donor substituents, many of the predic-
tions of the internal field model hold. It therefore provides a good starting point with
which to think about the tensor components of the hyperpolarizability that will result

from various substitution patterns.
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Figure 3.7: Schematic representation of the effects of electron donor and acceptor
substituents on the benzene skeleton. The left panel shows the interaction between
the p-orbital on benzene and the HOMO of a donor. The right panel shows the
interaction between the p-orbital on benzene and the LUMO of an acceptor.

3.9 Appendix

3.9.1 Quantum chemical representation of acceptor and donor

substituents

The presence of acceptor and donor substituents attached to a molecular skeleton
creates an internal potential within the molecule. To achieve this in the model, we
view the effect of the substituent as a perturbation to the energy of the orbitals of the
carbon atom to which the substituent is attached. The rationale for this approach is
shown schematically in Figure 3.7.

For an electron donating substituent, the HOMO of the substituent interacts with
the orbitals of the benzene ring. Since this orbital has an energy below the benzene
m system, interactions raise the energy of the orbitals on the carbon to which the
substituent is attached. For an electron withdrawing substituent, the LUMO of the
substituent has an energy above the benzene 7 system, and interactions lower the

energy of the carbon atom to which the substituent is attached.
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Chapter 4

Investigation of additional
molecular substitution patterns
using the generalized internal

potential model

Work done in collaboration with Professor Joseph Zyss

Ecole Normale Supérieure de Cachan, Cachan, France

4.1 Introduction

This chapter presents symmetry analysis and singular value decomposition (SVD)
calculations following the procedures of chapter 3 on three additional molecular skele-
tons. The molecular skeletons considered in this chapter are a carbon tetrahedral
skeleton (T,), Dsp, and D3 molecular skeletons (Figure 4.1). The carbon tetrahe-
dral skeleton is of interest because it has the same geometry as carbon tetrachloride
which, as early as 1964, had been shown to exhibit only f3,,, hyperpolarizability

components.[42] The triphenyl skeleton is of interest because it is the molecular
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Figure 4.1: Molecular skeletons for (a) carbon tetrafluoride, (b) the idealized triph-
enyl geometry, and (c) the geometry optimized triphenyl molecule. Molecule (a) has
tetrahedral (T,) symmetry, molecule (b) D3, symmetry, and molecule (c) D3 symme-
try.

skeleton for molecules such as crystal or ethyl violet which have been the subject
of numerous experimental studies.[21, 36, 43] These skeletons allow us to examine a

variety of two and three dimensional substitution patterns.

4.2 Symmetry Analysis

Following the procedure of section 3.4, the symmetry-adapted hyperpolarizability
tensors and potentials were determined for the three molecular skeletons of Figure 4.1.
Carbon tetrafluoride has tetrahedral (T;) symmetry, the idealized planar triphenyl
molecule has D3, symmetry, and the optimized geometry has D3 symmetry. Unlike
section 3.4 however, here only a limited number of sites on the molecular skeletons
are considered as locations for acceptor-donor substitution. In the carbon tetraflu-

oride molecular skeleton, the fluoride atoms are considered as substitution sites. In
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the triphenyl skeleton, atoms 5, 11, and 17 are considered as substitution sites (see
Figure 4.1).

Examination of the symmetry adapted internal potentials and the hyperpolariz-
abilities show some of the same characteristics as those seen in section 3.4. Note that
none of the molecular skeletons considered here have a center of inversion. Therefore,
it is possible that the substituted molecule may give rise to a non-zero hyperpolar-
izability. The absence of a center of inversion is reflected by the the presence of the
totally symmetric irreducible representations in the hyperpolarizabilities and poten-
tials of Table 4.1. But, as in section 3.4, only those hyperpolarizabilities of Table 4.1
corresponding to the molecular substitution patterns (V) found in the table are ac-
cessible. For example, although the symmetry analysis shows T; symmetry as a
possible hyperpolarizability for the tetrahedral skeleton, it is not accessible by any
substitution pattern on the molecule. In the optimized triphenyl geometry hyper-
polarizabilities with A{, Ay, and E representations are possible. Of these, however,
only A; and E representations are accessible through molecular substitution patterns.
Also, as in benzene, the SVD results show that the hyperpolarizability depends on
the m value of the spherical harmonic representation. In other words, the A; repre-
sentation for the tetrahedral molecule of Table 4.1 only has m = 2 components and

the Ty representation has m = 0, 1,3 components.

4.3 Singular value decomposition

As in section 3.5, it is also possible to extract the information contained in Ta-
ble 4.1 through singular value decomposition (SVD). In the tetrahedral molecules,
the L matrix of eq. 3.27 is 27x4 and for the triphenyl skeletons, 27x3. As in ben-
zene, the characteristic directions of the tetrahedral and triphenyl skeletons match
those determined in the symmetry analysis of the previous section (Table 4.1). Sim-
ilar to section 3.5, the values of T (Table 4.2) can provide information about the
relative contributions of the allowed substitution patterns of Table 4.1 in a general
substitution pattern on a molecular skeleton. In these molecular skeletons, all of the

representations are expected to have roughly equal magnitudes.
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Table 4.1: Symmetry-adapted hyperpolarizability tensors and internal potentials for
tetrahedral, idealized triphenyl, and geometry optimized triphenyl molecular skele-
tons of Figure 4.1. The notation {3%, 33,} indicates that any linear combination of
B3 and 2, will transform with the indicated symmetry. The internal potentials are
given as a normalized vector representing the value of the potential on each of the
three carbon atoms 5, 11, and 17 for the triphenyl skeleton of Figure 4.1. In the
doubly and triply degenerate internal potentials, any linear combination of the given
potentials is valid.

Carbon tetrafluoride, T4 symmetry
Hyperpolarizabilities

Symmetry J=3 J=1
Ay DL A
Ty {ﬂg,ﬁ,g,5%;332”3?,7,331} {lBlyﬂ 1;/30}
To {/Bg;ﬁigyﬂ%aﬁil;ﬂg} {1817/31 17/60}

Internal Potentials

Ay %[1711171]
1 1 1
) {ﬁ[?’v*l:*lv* ] \/—[0 0,— ] %[012771771]}

Ideal Triphenyl Geometry, D3; symmetry
Hyperpolarizabilities

Symmetry J=3 J=1
A1 75 178 +52o] o
E {ﬂ B2} {8181}

Internal Potentials

Ag Lq1,1,1
1 \/3[ 1]
E {%[2171771} 1%[0717711}

Optimized Triphenyl Geometry, D3 symmetry
Hyperpolarizabilities

Symmetry J=3 J=1
Al é [ﬂ_g :"Bi:;] ~ ~
As 75 123 - B3] . 553 By
E {63,821} {81,811}

Al L[15151]
E’ {£12,-1,-1],%]0,1,-1]
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Table 4.2: Results of the SVD analysis on the benzene skeleton, using the quantum
chemical models discussed in Section 3.3. Only those values of the matrices U and
W corresponding to nonzero values of T are reported. In the INDO models, results
are shown with the internal potential applied to the entire atom or to the just the 7
orbitals.

Hyperpolarizability Magnitudes, from the matrix T
Carbon Tetrafluoride, T; symmetry
Ay To
0.0747 0.0552

Ideal geometry, D3, symmetry
Al E’
67.2 63.5

Optimized geometry, D3 symmetry
Ay E
29.4 36.4

4.4 Discussion

The methods developed in Chapter 3 are applied to three additional molecular
skeletons. The results yield symmetry adapted substitution patters along with the
hyperpolarizabilities induced by these patterns. As in benzene, different symmetry-
adapted patterns lead to hyperpolarizabilities with different m values. The various

substitution patterns are predicted to yield hyperpolarizabilities of similar magnitude.
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Chapter 5

An introduction to periodic

systems

5.1 Introduction

The following three chapters deal with calculations involving periodic boundary
conditions. This chapter presents some preliminary background information that is
useful in the discussion of the following chapters. Since the following chapters deal
with one- and two-dimensional periodic systems, we will concentrate our discussion

on examples with these two dimensionalities.

5.2 The lattice of the periodic system

We will start by defining the periodic system under consideration. As an exam-
ple, consider a one-dimensional infinite chain with the lattice vector, ﬁ, defining the
distance from one site in the chain to another (Figure 5.1). Any translation along
the chain by an integer multiple amount of the lattice vector (mR) leaves the system
unchanged.[44, 38, 45, 46|

In a multi-dimensional system, the translation vector R has multiple components,
R = > mZRi, where m; is an integer and IA%, is a unit vector of the lattice. Each

component of R represents a translation by an integer amount in some direction in
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Figure 5.1: One dimensional infinite chain with lattice vector R. The centered prim-
itive cell of this lattice has its origin at one of the atoms of the lattice. The distance

from the origin of the primitive cell to its sides is ng. The dashed line indicates that
only one of the two sides is contained in the primitive or unit cell.

the lattice such that the lattice remains unchanged. For example, in a two dimensional
system R would have the form R = le + nRZ (Figure 5.2). The unit cell is the
regular polyhedron that is created by unit translations along the lattice vectors.[44]
The choice of lattice vectors is not unique; the only requirement is that repeated
translation by the unit vectors provide a covering of the lattice.[44, 45] In a cubic
lattice, such as that of Figure 5.2(a), R; and Rj are orthogonal, although there is no
requirement that the unit vector be orthogonal, e.g., the unit vectors of the hexagonal
lattice in Figure 5.2(b) have an angle of 60° between them.[44, 45]

It is often convenient to determine the minimum number of points that can make
up a unit cell, referred to as the primitive unit cell. The primitive cell is defined as
the maximal set of translationally inequivalent points in the lattice. The primative
unit cell consists of an open regular polyhedron created by the normal bisector planes
of the unit vectors of R (Figures 5.1 and 5.2), which by definition does not contain all
of its sides (otherwise some points would be members of multiple primitive cells).[44]
In the example of a one-dimensional infinite chain with only one type of atom, the
primitive cell corresponds to one atom per cell. For solid state theory it is also useful
to place the origin at the center of the cell, as in Figures 5.1 and 5.2. Often, centering
the primitive cell best reflects the symmetry of the system, e.g., compare the centered
primitive cell of the hexagonal lattice with the crystallographic cell of the same lattice
(see Figure 5.2(b) ).[44] Centering the primitive cell allows for solutions to operations
on the system wavefunctions, such as solutions to the Hartree-Fock problem, to be

symmetric about the cell origin, thus reflecting the invarience of the solutions to
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Figure 5.2: Two dimensional lattices. Lattice (a) has orthogonal lattice unit vec-
tors (R; and Rj). Lattice (b) has non-orthogonal lattice vectors (R, and R}). The
centered primitive cells are also shown for each lattice. In the hexagonal lattice,
the crystallographic unit cell is shown, illustrating how the centered primitive cell
expresses the symmetry of the hexagonal lattice.

changing the sign of the wavevector, i.e., E(k) = E(—k) (see below).[44, 45]

5.3 Periodic functions

To obtain information about the infinite periodic system, functions that exhibit
the same transformation properties as the periodic system are required. The goal

is to create functions that are invariant under the operations of the system’s point

group.

5.3.1 Bloch functions

In a crystal, each electron experiences a potential field due to the presence of the
other electrons and nuclei. Functions which are periodic and take into account the

potential field must satisfy Bloch’s theorem[44, 45],

- =

v (F+ R) = e Py (7), (5.1)
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(a)

Figure 5.3: Example of a two dimensional, hexagonal lattice showing the unit vectors
of the (a) direct lattice (R; and Ry) and those of the (b) reciprocal lattice (K; and K).
The filled circles on Figure (b) represent points where the Brillouin zone intersects
the Fermi surface and other points of interest in the Brillouin Zone.

where 7 is any vector, R is a lattice vector, and k is the wavevector. An example of

a function that satisfies Bloch’s theorem is the Bloch function,

—

e (7) = €y (7), (5.2)
where u(7) is a functinon that is periodic in the lattice,

up(7 + R) = u(7). (5.3)

5.3.2 The reciprocal lattice

As is stated in section 5.2, the lattice vectors are not necessarily orthogonal. To
obtain a periodic function in a lattice with a non-orthogonal set of unit vectors one
must define a set of reciprocal lattice vectors, Ki, such that K - Rj = 2md; ;. With k
of eq. 5.2 redefined as,

k= gK, + hK, + kK3, (5.4)

eq. 5.2 still satisfies Bloch’s theorem. It is now useful to refer to the lattice formed
by R; as the direct lattice and the set of points formed by repeated translations of K;
as the reciprocal lattice. Figure 5.3 shows examples of both the direct and reciprocal
lattices of a two-dimensional, hexagonal system.

The primitive cell of the reciprocal lattice is referred to as the first Brillouin zone

(defined in the same fashion as the primitive cell of the direct lattice). In the Brillouin



o8

zone, values of the wavevector become discretized in correspondence to the number
of unit cells explicitly considered in the system.[44, 45] For periodic systems with N
unit cells the function must be invarient to translations by N R. This is accomplished
by setting a; = 275, with k; = 1,---, N.[44, 45, 46] It is useful to define the Brillouin

zone so that the energy is symmetric about the origin of the Brillouin zone. This can
_(N-1) | (N-1
2 T T

be achieved by setting the possible values of \E | to ) and moving the
origin to the center of the Brillouin zone. It is also useful to define certain points
of high symmetry within the Brillouin zone; the origin of the Brillouin zone is given
the symbol I" and points at the surface of the Brillouin zone along directions K of
high symmetry are given the symbol M (examples of these points can be found in
Figure 5.3).[46]

Within the Brillouin zone, surfaces of constant energy can be determined, the
dimension of which is one less than that of the dimension of the Brillouin zone. For
example, in a two dimensional Brillouin zone, the constant energy surfaces are lines.
One such surface of particular interest is the Fermi surface, a surface whose energy is
half-way between the energy of the highest occupied molecular orbital (HOMO) and
the energy of the lowest unoccupied molecular orbital (LUMO). The location of the
Fermi surface has important consequences in determining the conduction properties
of a material. The size of the gap between the HOMO and LUMO determines whether
the material is a conductor, insulator, or semi-metal. One definition of a conductor is
that both the HOMO and LUMO intersect the Fermi level at the same point. As was
discussed above, values of k in the Brillouin zone are discretized. A periodic system
is a conductor if at least one of the allowed values of k passes through a point where

the HOMO and LUMO touch the Fermi surface.

5.3.3 Wannier functions

Bloch functions, eq. 5.2, are delocalized over the chain and reflect the periodicity
of the direct lattice.[45] If we wish to examine localized phenomena, then functions
that are localized on unit cells would be useful.[44] Wannier functions, Wod(7),

are a type of function that is periodic in the reciprocal lattice and localized in the
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Figure 5.4: Examples of the reciprocal lattices for (a) an one-dimensional chain, (b)
a two dimensional cubic reciprocal lattice, and (c) a hexagonal reciprocal lattice. In
each lattice an example of a possible choice for k£ of k; = ko is shown.

direct lattice.[45] The Fourier series for the wavefunction may be written as a periodic

function in the reciprocal lattice,
fana(F) = S W47 — ), (5.5)
R

where the sum is over all lattice vectors. The Wannier function is then the inverse

Fourier transform of the Bloch functions,

W7 — R) = —= 3 e MR (7). (5.6)
k

where ¥¥) () are the molecular wavefunctions written in Bloch form. While ¥{¥) (7
is associated with a particular wavevector (I;) of the lattice, the Wannier function,

Whand () is a localized function centered on the unit cell.

5.4 Operator evaluations in periodic boundary con-
ditions

As an example of how periodic functions can be used to obtain information about

the system, we will consider the Hartree-Fock problem within periodic boundary
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conditions. Start with a wavefunction for a one-dimensional chain,

| Yk ) KR |ny (5.7)

_ \/_ Z e
where n is a unit cell index, N is the total number of unit cells, k is the wavevector,
19 — 2

=, and |n) is the Wannier function centered on the unit cell n. Consider a

general operator, O, that depends only on the distance between unit cells, e.g., the
Fock operator, F and the Hamiltonian, H. The expectation value of O for the function
1) is then

A 1 —id9k'm A ivkn
(YL 1O ¢) = NZe K (m| O n) ™" (5.8)

1 ) p R
- ezﬁ(kn—k m) <m‘ O |n>
N

(kn — k'm) can be rewritten as k(n — m) — (k' — k)m and the distance between unit
cells defined as A = (n —m). Substituting these relations into eq. 5.8 gives,

A 1 i (k' —k)ym A
<¢L|0|¢k>=ﬁze’me’”k O (m| O In)). (5.9)

n,m

Recall that the operator O depends only on the distance between unit cells not their
absolute position on the chain, and so the matrix elements between unit cells m and
n is

(m| O|n) =(0/0|A). (5.10)
In summations over m, the second exponential in eq. 5.9 reduces to Ndj . Using
equation 5.10, eq. 5.9 can be rewritten ,

(Vb | O] ) =D ™2 (0] O‘ A) O - (5.11)

A

Choices for the values of ¥ and k corresponding to that of section 5.3.2 can be ob-

tained for the exponential in eq. 5.11 by setting ¥ = QW” and allowing £k to range over
G (Nz—l), N odd.

2 )
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5.4.1 Determination of the Hiickel energy in a periodic sys-
tem
To illustrate the use of eq. 5.11 for a specific operator, H, we will determine the

energy of a linear chain of NV atoms, such as that shown in Figure 5.1. The energy of

the system can be determined by,

ULV H | e

E(k) = M (5.12)

Substituting eq. 5.11 into eq. 5.12, and since, for |¢x) of eq. 5.7, (7,b£|1/},3) =1,
E(k)= (¢l H|yg) = > ™ (O|H|A). (5.13)

A
In Hiickel theory,
E, ifA=0

(O|H[A) =9 B, if A==l (5.14)

0, otherwise

where F, is the on-atom energy and (3 is the hopping integral from one atom to the
next. Substitution of eq. 5.14 into eq. 5.13 results in an expression for the band

structure of a one-dimensional Hiickel chain,

E(k) = E,+ (=) e [6a, + 0a,1] (5.15)
- E, + (—,3) [eiﬂk _|_e—z'191c]

= E, — 2Bcos(0k).

Figure 5.5 shows the band structure for eq. 5.15. Since cos(9k) is periodic over

the range —7 to 7, eq. 5.15 and Figure 5.5 straightforwardly illustrate how choosing

9 = %” and allowing £ to range over — (NQ_I), cee (NQ_I), N odd, reflects the periodicity

of the exponential.
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Figure 5.5: Band structure solutions of eq. 5.15 for an one dimensional infinite chain.
Where I' is the origin of the Brillouin zone and M is a point on the surface of the
Brillouin zone along the direction £ indicated in Figure 5.4(a).
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Chapter 6

INDO/SCI in periodic boundary
conditions: the absorption
spectrum of poly(para-phenylene

vinylene)

6.1 Introduction

Conjugated polymers are an important class of organic semiconductors that may
be useful for the construction of flat screen displays[3, 4], transistors[12] and lasers|5,
6]. The electronic structure of these materials is quite complex, and constructs bor-
rowed both from the photophysics of organic molecules and the photophysics of bulk
semiconductors have proven useful in their description. A central goal of the work
presented here is to develop methods and tools that further promote the integration of
these two approaches. The Intermediate Neglect of Differential Overlap (INDO)[27]
method has been found to be quite useful in describing the photophysics of medium-
size organic molecules; however, current implementations of INDO theory may be
applied only to oligomers of conjugated polymers[47]. Here, we develop the tools
needed to perform INDO calculations within periodic boundary conditions. This

generates constructs such as the band structure and Wannier functions that help cast
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the results in the language of solid-state physics. In addition, the use of periodic
boundary conditions makes calculations on large systems computationally feasible
and, due to the introduction of the crystal momentum as a good quantum number,
aids in the interpretation of the complex energy-level structure that arises from INDO
calculations on large systems.

These tools are especially useful for studying the photophysics of conjugated poly-
mers with more than one active valence and conduction band. Much of our current
theoretical understanding of the electronic structure of conjugated polymers is based
on studies performed on two-band systems, such as the m-electron model of polyacety-
lene, for which there is only one type of hole and one type of electron[48, 14, 17, 16].
This limits the number of parameters in the model and makes it possible to explore
a wide range of parameter space. Indeed, such studies have revealed many general
features of the photophysics, including the nature of the 2A, electronic state[14, 17]
and the essential states that dominate the nonlinear optical response[16].

PPV and many other conjugated polymers, however, have a number of bands that
participate in the photophysics and this raises new and interesting questions that are
beginning to be addressed[49, 50, 51, 52]. Studies of these systems are complicated
by the large number of parameters present in models of multi-band systems and
the finding that many predictions are sensitive to the choice of these parameters.
INDO has the advantage of providing a systematic approach to the determination
of these parameters from the chemical structure. Given the chemical structure of
organic molecules, INDO has been quite successful in predicting the photophysical
properties. It therefore provides a useful starting point for studies of multi-band
conjugated polymer systems.

As a first application of these tools, we present studies of the electronic structure
of PPV, an important candidate material for flat-screen display technologies. In
particular, we consider the origin of the 3.7 eV transition in the UV /VIS spectrum
of PPV[52, 53, 54, 55, 56]. This transition becomes allowed only through electron-
hole symmetry breaking, and here we explore various mechanisms for breaking this
symmetry. The formalism is developed in Sec. 6.2 and the details of the calculations

are given in Sec. 6.3, followed by a discussion in Sec. 6.4.
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6.2 Formalism

6.2.1 Hartree-Fock

The INDO Hamiltonian is discussed in detail in Ref. [27], and is summarized here
at a level that establishes the notation. The one-electron matrix elements on a single
atom, U, ;, are obtained from the Slater-Condon factors. Between atoms, the one

electron matrix elements are given by,

(i|hi|5) = Sij (Ba+ Bs) /2, (6.1)

where S;; is the overlap between the i* and j orbitals, scaled such that the 7
overlaps between p-orbitals are multiplied by 1.266 and the o overlaps between p-
orbitals are multiplied by 0.585. 54 and 8p are semi-empirical parameters that depend
only on the respective elements. The overlaps between Slater orbitals are calculated
using the method of Fernandez Rico et al[57].

We use chemist’s notation for the two electronic integrals, (ij|k1)[58]. Both

Coulomb and exchange integrals are retained for orbitals residing on the same atom,
o A
(@17 5) atom 4 = Jii (6.2)

(2] |ji)atom A~ KZI?]’ (63)
These are obtained from the Slater-Condon factors as in Ref. [27]. The zero differential

overlap approximation is assumed between atoms,
(i7 | k1) = va,B0,i0k, (6.4)

where the %" orbital is on atom A, and the k™ orbital is on atom B. Ya,B is also
used to describe the Coulomb repulsion between nuclei, and the attraction between

an electron on atom A and the core of atom B. The Mataga-Nishimoto form is used

for ya.m

_ fy
TAB = 2fy/ (Yaa +vBB) + €RAB
where 74 4 is the Hubbard parameter for atom A, and R4 p is the distance between

atoms A and B. The form used in INDO is equivalent to that of Eq. (6.5) with ¢ =

(6.5)
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1/1.2, a value chosen to obtain better agreement with the spectrum of benzene[27].
But at long range, the potential is then stronger than a bare Coulomb force, and this
is not appropriate for large systems such as those considered here. In particular, this
would serve to raise the exciton binding energy. In the calculations presented here,
we use € = 1.

The Fock operator, written in atomic orbitals, is then,

1
F_  =U; + Y Py [in - —Kfi] (6.6)
2,1 jJEA 2
1€ A
+ > [ eff] YA,B
B#£A
3 1
F _p.[2Ka —J-“‘-] 6.7
i,j 5] [2 2 ,J ( )
,j €A
_ 1
F S (ﬂA-FﬁB) _ _Pi’ij’B (6.8)
i, ] 2 2
i1€A,jEB

where ¢ and j label atomic orbitals, A and B label atoms, P, ; is the density matrix,
Pg is the total electron density on atom B, and ch s 1s the core charge of atom B.

For a polymer with /N unit cells and periodic boundary conditions, the molecular

> (6.9)

n
> will be used throughout this paper to indicate the a* atomic
a

orbital in the n'® unit cell. Unless otherwise noted, all sums are over the entire range

orbitals may be written,

‘\III()ZZLd> f ZeanZ aband

where the notation

of the summation index, i.e. n =1... N. The labels band and k denote the band and
wavevector of this orbital. £ = 7 with j an integer between 1 and N, and 6 = ZW”
Both n and j are invariant with respect to addition of N, and it is often convenient

to use the range —n...7n, with n = &= and N odd.
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Note that for £ # 0, C (k) 4 1s complex. The density matrix is then,

a,ban

=N Z Z ek m)C( bandcd band- (6.10)
k band

The Fock operator is block diagonal in the wavevector £, leading to N blocks of the
form,

F& =3 e *np,,, (6.11)

n ab

where Fo is the Fock operator in the atomic basis, Egs. (6.6-6.8). Due to periodic
boundargf bconditions, an atom is invariant to displacement by NB, where B is the
Brillioun vector connecting unit cells. In evaluating F'n o, the atoms are displaced to
obtain the shortest distance consistent with the periodaif: boundary conditions.

The Hartree-Fock solution is obtained iteratively, starting with a diagonal density
matrix constructed such that the atoms are neutral and the electron density is equally
distributed among the orbitals on a given atom. The Hartree-Fock iterations continue
until the largest change in any single Fock matrix element is less than one part in
1010,

6.2.2 Wannier functions

The molecular orbitals of Eq. (6.9) may be written,
k 1 ikn an
i) = Vi > etk wpend), (6.12)

where ‘W,’{‘md> is the Wannier function centered on the n'® unit cell. In the atomic

m> (6.13)

a

basis, these are given by,

band band
whend) = 3 whend,
a

I

band Zezkm zd)b‘md (k) (614)

a band

The phase factor, ¢’ is included in Eq. (6.14) because the phase of the molecular
orbitals, Eq. (6.9), may be chosen arbitrarily. For convenience, the Wannier functions

are made real by choosing ¢%**¢ such that et ok)

aband 1S the complex conjugate of
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s dC’(fbng This leaves Q undetermined phases, which may be chosen to give a
Wannier function of minimal size. For the PPP model of polyacetylene, Kertesz[59]
showed that a Wannier function of minimal size is obtained by choosing equal and
opposite phases for the two p-orbitals in the unit cell. We are not aware of an
analytical solution for an arbitrary unit cell, and instead use a numerical approach.

The size of the Wannier function is defined as,

Size = Zn

(band) (6.15)

The ¢%*"¢ that minimize the size are determined using the Simplex algorithm[60]. The
resulting minimum is somewhat sensitive to the starting point, and we have found
that the following procedure leads to well-localized Wannier functions. The size of
the Wannier function of a dimerized one-dimensional chain is minimized when the
“average phase” of the orbital coefficients is zero[59], where the phase being averaged
does not include the sign change associated with nodes in the wavefunction. To
generalize the concept of an “average phase”, we first bring the coefficients for the
various wavevectors into coarse alignment by identifying the orbital index, a4y gest, for
) > 0.0 for all k
by multiplying the wavefunctions by —1, when necessary. An average phase is then
defined as,

which C#%0 , has the largest norm, and then force Re (C

Qiargestsband

phend = Zarg( C¥ pana) (6.16)

where the sum includes only those values of a for which ‘Ca b,md‘ > 0.1 r

largestband|>
and S is the number of terms included in the sum. In calculating the averagge—phase,
we are not interested in the 180° phase shifts arising from nodes in the Wannier
function. These shifts are removed via the (—1)? term of Eq. (6.16), with p = 1 if
Re (Ca band) < 0 and p = 0 otherwise. The starting point for the simplex algorithm
is obtained by setting ¢fon? = —ghand,

The one and two electron Hamiltonian matrix elements are then transformed to
the Wannier function basis. Transformation of the two electron matrix elements is

accelerated by truncating the Wannier functions. The Wannier functions are peaked

on the center, n = 0, unit cell and decay with increasing |n|. The Wannier function
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is truncated by setting w(émnd) = 0 for n > W_, and then normalizing the resulting

function. In the calculatlons presented below, W,.,; was set to 5 unit cells, which was

sufficient for convergence.

6.2.3 Configuration Interaction

In periodic boundary conditions, the single electron-hole pair basis functions may
be written,

1 .
Py = =Y ek A 6.17
2and ﬁbcﬁzd’ \/N ; ¢I?and—> I;,(LL_Ttd’ ( )

where upper-case K is the wavevector of the many-body wavefunction (lower-case k
is used for the molecular orbitals of Eq. (6.9)). ¥, _ _is a singlet electron-hole
function, containing a hole in the valence band Wab?ﬁ;jierb afrlbldnction on the n'* unit cell,
W band) and an electron in the conduction band orbital on the n/™ unit cell, W *"4).

Note that, due to translational symmetry, only the separation between the electron

and hole, A, is relevant. For convenience, we introduce the following notation for a

general many-body basis function,

oK) = iKn g 4 n) (6.18)

TN Z e
where a labels a particular arrangement of electrons and holes and |a + n) indicates

that these have been displaced by n unit cells.

The matrix elements of the Hamiltonian are then given by,

~ 1 . ~
a GS) = ——=Y e (a+ A|H|GS)
(s flos) = 75
= VN {(a| H|GS) 6k (6.19)
and,
(o |H|ok) = l%ze’“ (b+ Al H |a)| 6 x (6.20)
A

where |GS) is the ground electronic state.
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6.2.4 Transition moments

To obtain a transition moment operator that is consistent with the periodic bound-
ary conditions, we use that for a ring of polymer with N unit cells[61, 62, 63]. We

begin with a unit cell that lies (as much as possible) in the (z,y) plane and a Brillouin

vector, B, that lies along the x-axis. The vector r](-umt) gives the position of the ;™
atom in the unit cell with respect to the center of the unit cell. The center is chosen
by bisecting the line that connects the first (left-most) atom of the unit cell to the
corresponding atom of the next unit cell. A ring in the (z, z) plane is then formed by
arranging the centers of the unit cells on a circle with radius,
B

= 2sin| (7r|/N)’ (6.21)
chosen such that the chord connecting the centers of the unit cells has length |B].
The unit cells are rotated about the y-axis such that they are tangent to the ring.

The x-coordinate of the j* atom of the n'® unit cell is then given by

X, = xg-umt) cos (6n) + (R - zj(-“mt)) sin (n), (6.22)
J
where § = 27 (see text below eq. (6.9)).

It is convenient to introduce an operator, Y, which has the following matrix ele-

ments in the atomic basis,

m> — (6.23)

% (x(unit) e (_ R4+ Z](unit))) Snmbi

J
The x-operator corresponding to Eq. (6.22) is then,
X = xe? 4+ xfe ¥ (6.24)

The operator X is convenient because y raises the wavevector of a many-body state

by @, while ¢! lowers the wavevector by 6,

K| X |GS) = (6.25)
(
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VN [(al X|GS) 0 40 + {al X1 |GS) Ok o]
(o | X o) = (6.26)

e [{b -+ X |a) Sacro + (b4 1l %) Grc g

n

The transition moment operator along the y-axis, perpendicular to the polymer axis,
is diagonal in K and its evaluation is similar to that of the Hamiltonian, Egs. (6.19)
and (6.20).

The ring geometry is used only to obtain a periodic transition moment operator.
As described in Sec. 6.2.1, the Hamiltonian parameters are those for a linear chain,
and thus do not include curvature effects which would serve only to slow convergence
to the long-chain limit. In generating spectra, it is useful to remove artifacts arising
from the use of a ring geometry. For a ring in the (x, z)-plane, the absorption intensity
due to transitions polarized parallel to the polymer axis is spread equally between the
x and z axes, while that polarized perpendicular to the polymer axis lies only along
the y axis. In the absorption spectra shown below, the parallel transition spectrum
is multiplied by 2, so that in the long-chain limit, the relative intensities reflect those
of a chain rather than a ring.

The C++ code used in these calculations is a general implementation of PPP
and INDO calculations for both non-periodic and periodic systems. The non-periodic
functionality was verified by comparison with the ZINDO program[27]. The periodic
functionality was verified by comparison of state energies and both the linear and
non-linear optical polarizabilities of a ring of polymer, calculated with and without

the assumption of periodic boundary conditions.
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Figure 6.1: Geometry of a unit cell of PPV, extracted from an AM1 calculation on
an oligomer with six phenyl rings and 5 double bonds, constrained to remain planar.
Bond lengths are in Angstroms.

6.3 Results

6.3.1 Chemical Structures

The geometry of a unit cell of PPV and its derivatives was obtained from AM1
calculations[64] on an oligomer containing 6 phenyl rings connected by 5 ¢rans double
bonds. To allow for a rigorous separation of ¢ and 7 orbitals, we first constrained the
geometry to remain planar. For unsubstituted PPV, this constraint has essentially
no effect on the geometry, and its removal lowers the calculated heat of formation
by less than 0.2 kcal/mole. The geometry of the unit cell, shown in Fig. 6.1, was
obtained from the central double bond and an adjacent phenyl ring of the optimized
oligomer structure.

As a simple model of MEH-PPV | or general alkoxy substituted PPV, we consider
dihydroxy-PPV (OH-PPV) obtained through hydroxy substitution at the 2 and 5
positions of the phenyl ring in Fig. 6.1. The molecular geometries were obtained
following the procedure outlined above for PPV. However, when the geometry of OH-
PPV is constrained to be planar, the resulting energy is 9 kcal/mole higher than the
energy obtained from an unconstrained geometry optimization. In the fully optimized
structure, the vinylene bonds rotate out of plane by about 20°. Results are presented

below for both planar and fully-optimized, non-planar OH-PPV. The results for the
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Figure 6.2: 7 band structure and band labels for (a) unsubstituted, planar PPV, (b)
PPV with the p,-orbitals on carbons 2 and 5 perturbed by -1 eV (subs-PPV), (c)
planar di-hydroxy-PPV (OH-PPV), and (d) fully-optimized, non-planar OH-PPV.
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planar structure show the effects of the hydroxy substitution, without the added com-
plication of the o-7 orbital mixing that arises from the vinylene rotation. Replacing
the hydroxy groups with methoxy groups (MeO-PPV) leaves the structure of the
backbone essentially unchanged. Since the photophysical predictions for MeO-PPV
are essentially identical to those of OH-PPV, below, we present a detailed analysis
of the band structure and photophysics of the simpler OH-PPV system. In particu-
lar, OH-PPV is simpler because the methyl groups of MeO-PPV make the structure
non-planar and prevent a rigorous separation of ¢ and 7 electrons.

The chemical structures of the oligomers studied below were obtained from AM1
geometry optimizations on oligomers with between 4 and 8 phenylene rings connected

by trans-vinylenes.

6.3.2 Hartree-Fock band structure and Wannier functions

The 7 band structures of PPV and OH-PPV, obtained as described in Sec. 6.2.1
with N=21 unit cells, are shown in Fig. 6.2. The results for unsubstituted PPV are
shown in Fig. 6.2(a). The flat bands are labeled [ for localized, and the delocalized
bands are labeled d,, with n increasing as one moves away from the Fermi energy. A
x is used to indicate conduction, as opposed to valence, bands.

Previous studies[52, 51], performed using a m-electron model, included the effects
of alkoxy substitution by altering the energy of the p-orbital to which the substituent
is attached. A similar approach can be implemented in the INDO Hamiltonian by
adding a perturbation to the Hamiltonian of Sec. 6.2.1 that alters the energy of the
2p, orbital on the respective carbon atoms. The results in Fig. 6.2(b) were obtained
by subtracting 1 eV from the orbital energy of the p, orbital on carbons 2 and 5 of
PPV (Fig. 6.1). We will refer to this system as subs-PPV for substituted PPV.

Fig. 6.2(c) shows the 7 bands of planar OH-PPV. For a planar molecular geometry,
such as in Figs. 6.2(a)-(c), there is a rigorous separation of ¢ and 7 orbitals, and
only the 7 bands are shown. Such a separation is not rigorous for fully-optimized,
non-planar OH-PPV, and the bands shown in Fig. 6.2(d) are those with the largest 7

content. Significant mixing of 7 and o character occurs only in the four lowest-energy
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Figure 6.3: Wannier functions for the 7-bands of PPV in Fig. 6.2(a). The sizes of
the circles are proportional to the absolute value of the Wannier function on the p,-

orbital of that carbon. Open and closed circles indicate positive and negative values,
respectively.

bands of Fig. 6.2(d).
The Wannier functions for the = bands of PPV and planar OH-PPV are shown
in Figs. 6.3 and 6.4, respectively.

6.3.3 Singles-CI

Fig. 6.5 shows the absorption spectra from singles-configuration interaction (S-
CI) calculations for the systems of Fig. 6.2. For the planar molecular structures
of Figs. 6.5(a)-(c), there is no mixing of o and = bands and the S-CI calculations
include all 7 bands. For non-planar OH-PPV, Fig. 6.5(d), the calculation includes
the 8 highest-energy valence and 6 lowest-energy conduction bands. Table 6.1 shows
the contributions of various bands to the transitions labeled I through IV in Fig. 6.5.

Figs. 6.6 and 6.7 show spectra obtained from S-CI calculations on oligomers of
PPV and OH-PPV. The oligomers contain between N=4 and N=8 phenyl rings,
connected by trans-vinylenes. For N=4 through N=6, the S-CI basis was formed
from all excitations between the 8V highest-energy filled molecular orbitals and the
6N lowest-energy empty molecular orbitals. For N=7 and N=8, the basis was formed
from the 48 highest filled and 36 lowest empty orbitals. The labeling of the peaks is

discussed in Sec. 6.4.
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Table 6.1: State energies, oscillator strengths, and band composition for the states
giving rise to peaks in the absorption spectra of Fig. 6.2. The band labels correspond
to those of Fig. 6.2.

Peak E osc_x oscy band composition
(a) planar, unsubstituted PPV
I 3.0 100 99.3% d1 — d}
II 4.0 0.2 63.3% d1 — 1* ,31.4% | — d}
II 4.0 0.7 63.3% d1 —1*,31.4% 1 — d}
T 5.4 21 59.0% ! — df , 36.4% d1 — I*
IV 6.5 20 63.9% 1 — 1* , 13.6% d1 — d}

2
9.31% d2 — d} , 7.44% dy — d}
(b) planar PPV with the energy of carbon atoms 2 and 5 (Fig. 6.1) lowered by 1 eV

I 29 100 98.4% di — d}

I 4.0 7 67.0% di — 1* ,16.8% | — d} , 8.88% d1 — d}

I 4.0 5 67.9%d1 —1*,17.0% 1 = d} , 7.62% d1 — d}
I 55 7 65.5%di —di , 16.8% di — I* ,15.3% | — d*
o 5.5 8 38.3%d1 —d¥,36.6%1—d;,20.7% dy — I*
IV 6.1 10 78.7% dy —1* ,12.6% 1l — d} , 6.59% d1 — d}
IV 6.5 20 32.0% 1 —1* ,18.3% d1 — 1*, 12.8% d1 — d} ,

12.0% d1 — d3 , 9.43% | — d} , 9.19% d1 — dj
IV 6.5 7 35.6% di — I* , 16.6% d1 — dj , 16.0% d1 — d ,

121% 1 =1, 6.51% | — d} , 6.46% d2 — d} ,
5.22% d1 — d’{
(c) planar di-hydoxy-PPV

T 3.0 100 96.4% di — d;

o 39 4 42.8% 1 — d¥ , 41.0% d1 — I* , 10.7% d1 — d*
I 5.1 50 52.2% di — I* , 41.5% | — d}
IV 5.7 30 43.4% 1 — I* , 25.6% d1 — I* , 16.4% | — d ,

11.5% d1 — d3
(d) non-planar, di-hydroxy-PPV

T 30 100 97.2% di — d;

I 3.9 4 49.8% di — 1* ,35.4% | — d} , 6.39% dy — d
m o 5.1 30 44.5% 1 — d; , 34.3% di — I* , 18.3% d1 — d}
v 57 30 45.9% 1 — I* , 29.2% di — I* , 11.4% di — dj ,

747% 1 > d}
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Figure 6.4: Wannier functions of the 7-bands of planar di-hydroxy-PPV (OH-PPV)
in Fig. 6.2(c).

6.4 Discussion

The experimental absorption spectrum[52, 53, 54, 55, 56] of PPV exhibits strong
transitions at about 2.4 €V, 4.7 eV and 6 eV. A transition at about 3.7 eV is observed
in substituted PPV samples, with an intensity that is roughly equal to that of the
transition at 4.7 eV. We will refer to these transitions as I (2.4eV), II (3.7 eV), III
(4.7 V) and IV (6.0 eV). Transitions I and IV are polarized parallel to the polymer
axis and transition III is polarized perpendicular to the polymer axis. Transition II
appears to be primarily polarized parallel to the polymer axis[52, 54, 55].

In previous theoretical studies[49, 51, 52|, there is general agreement that peak
I consists of an excitation from the highest valence to the lowest conduction band,
dy — d7i, and that peak IV arises from a transition between the localized valence and
conduction bands, I — [*. Similar results are obtained here from INDO calculations
on long-chains of PPV with periodic boundary conditions. For both unsubstituted

and substituted PPV, Table 6.1 indicates that peak I is greater than 95% d; —
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Figure 6.5: Absorption spectra of (a) unsubstituted, planar PPV, (b) PPV with the
p.-orbitals on carbons 2 and 5 perturbed by -1 eV (subs-PPV), (c) planar di-hydroxy-
PPV (OH-PPV), and (d) fully-optimized, non-planar OH-PPV. The solid line is the
total absorption spectrum, the dotted line is absorption polarized perpendicular to
the chain axis, and the dashed line is absorption polarized parallel to the chain axis.
The peaks are labeled according to the discussion in Sec. 6.4.
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Figure 6.6: Absorption spectrum of oligomers of PPV, consisting of N phenyl rings
connected by trans-vinylene groups. N=oco denotes the long-chain limit, obtained
from a calculation on 21 unit cells with periodic boundary conditions (as in Fig. 6.5).
The peaks are labeled according to the discussion in Sec. 6.4, with peaks Ib and Ic
converging to peak I in the limit of a long chain. The oligomer spectra are divided
by the number of phenylene units, N, such that the intensities are comparable. The
intensity of the long-chain spectrum is adjusted such that the peak III intensity is
equal to the average of that seen for the oligomers.



80

Absorption (arbitrary units)

LA IR DL I ENLEN INNLEN EENLA BN B B
20 25 30 35 40 45 50 55 60 65 70

Energy (eV)

Figure 6.7: Absorption spectrum of oligomers of fully-optimized, non-planar di-
hydroxy-PPV (OH-PPV). The notation is as in Fig. 6.6.

1 in character. Although the calculated transition energy of 3.0 eV is somewhat
higher than the experimentally observed 2.4 eV, this is perhaps expected since these
calculations are for an isolated chain and dielectric effects present in the solid-state
are expected to lead to a red-shift of a few tenths of an eV[65, 32]. The INDO
calculations also support the assignment of peak IV to [ — [*, although there are
35% contributions from other configurations in PPV and this increases to 55% in
OH-PPV. This increase likely reflects the mixing between localized and delocalized
bands seen in Fig. 6.2(c). Overall, the INDO results for peaks I and IV are consistent
with past work.

Peaks II and III are typically assigned to states arising from the [ — dj and
d; — [* excitations; however, the details of these assignments differ[51, 52]. A central
issue is the breaking of electron-hole symmetry, also known as alternancy or charge-

conjugation symmetry[39]. Electron-hole symmetry is present for m-electron models
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that include only nearest neighbor transfer integrals, such as Hiickel or Parriser-Parr-
Pople (PPP) theory[14], and chemical structures that are alternant. In an alternant
chemical structure, only carbon atoms participate in the m-electronic structure and
these carbons may be divided into two disjoint sets, {A} and {B}, such that no car-
bon atom is bonded to another carbon atom in the same set[39]. When alternancy
symmetry applies, the valence and conduction band orbitals form pairs with energies
distributed symmetrically about the Fermi energy. Since PPV is an alternant struc-
ture, Hiickel or Parriser-Parr-Pople (PPP) theory yields bands that exhibit electron-
hole symmetry. In these models, the band structure resembles that of Fig. 6.2(a) but
with bands d; and d} being perfect mirror images of one other and likewise for the
other bands. (The slight breaking of this symmetry in Fig. 6.2(a) is discussed below.)
In models with electron-hole symmetry, the configurations formed from an | — d7 ex-
citation are degenerate with those formed from d; — [*. In Hiickel theory, this leads
to two overlapping transitions with an energy half-way between that of peaks I and
IV. In a model such as PPP theory that includes electron-electron interactions, there
is a significant coupling between these two configurations. This configuration inter-
action leads to in-phase and out-of-phase combinations of [ — dj and d; — [*. The
estimated splitting between these in-phase and out-of-phase combinations is sufficient
to account for states at the positions of peaks II and III; however, only the upper
state is predicted to carry optical intensity. Models with electron-hole symmetry can
therefore account for peak III and for a state with an energy appropriate for peak II;
however, they cannot account for the observed intensity in peak II.

It has been suggested that chemical substitution, such as in MEH-PPV, may break
charge conjugation symmetry and thus account for the intensity in peak II[51, 52].
Here, we examine this and other symmetry breaking mechanisms. In examining these
mechanisms, we consider their effects on the relative intensities of peaks II and III
(see Table 6.2). In the experimental spectrum of substituted PPV’s, these two peaks
have roughly equal intensity[52, 53, 54, 55, 56].

While Hiickel and PPP theory include one-electron matrix elements only between
adjacent atoms, the INDO Hamiltonian includes one-electron matrix elements be-

tween all atoms, Eq. (6.1). This breaks electron-hole symmetry and causes the va-
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Table 6.2: Ratios of intensities for selected peaks in the spectra of Figs. 6.5, 6.6, and
6.7.

Periodic calculations

Unsubstituted PPV Intensity OH-PPV intensity OMe-PPV intensity
peak II : peak III peak II : peak III peak IL:III
planar 1:24.0 planar 1:12.2
Non-planar 1:26.7 non-planar 1:7.0 non-planar 1:8.9
subs-PPV 1:1.10
OH-PPV Oligomers
Number of rings intensity intensity
in the OH-PPYV oligomer peak II : peak III  peak Ib: II
4 1:3.96 1:1.47
5 1:4.26 1:1.48
6 1:3.81 1:1.86
7 1:3.88 1:1.06
8 1:4.43 1.18: 1

MeO-PPV Oligomers

Number of rings intensity intensity
in the MeO-PPYV oligomer peak II : peak III  peak Ib : II
4 1:4.90 1:1.16
5 1:6.63 1.29: 1
6 1:4.78 1:1.47
7 1:5.07 1.16 : 1
8 1:4.44 1.32: 1

lence bands to be wider than the conduction bands in Fig. 6.2(a). The breaking of
electron-hole symmetry is also apparent in the Wannier functions of Fig. 6.3. As
discussed above, an alternant chemical structure is one where it is possible to divide
the carbons into two disjoint sets, {A} and {B}, such that no carbon atom is bonded
to another carbon atom in the same set. When electron-hole symmetry applies, the
valence and conduction band orbitals are related by changing the sign of the wave-
function on one of these sets, {A} or {B}. This is the case for the relatively flat bands,
ds,d; and [,l*. However, the other bands, including the highest valence and lowest
conduction bands, deviate rather strongly from this particle-hole symmetry behavior.
While this symmetry breaking does give some intensity to peak II in Fig. 6.5(a), the
ratio of intensities for peak II to peak III is 1:24 (Table 6.2), as compared to the
roughly equal intensities seen experimentally.

Considerably larger effects from electron-hole symmetry breaking are seen in the
band structure of planar 2,5 dihydroxy-PPV (OH-PPV), Fig. 6.2(c). The lone pairs
on the oxygens of the hydroxy substituents add two additional valence bands to

the m-band structure and these are labeled O; and O, in Fig. 6.2(c). There is also
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substantial mixing of the delocalized and localized valence bands, and this mixing is
not mirrored in the conduction bands. Comparison of the Wannier functions of OH-
PPV (Fig. 6.4) with unsubstituted PPV (Fig. 6.3) also reveals significantly stronger
effects from electron-hole symmetry breaking. In unsubstituted PPV, the Wannier
functions for bands d3 and [ are related to those of d; and [* by electron-hole symmetry.
In OH-PPV, none of the bands are paired in this manner. The absorption spectrum
of Fig. 6.5(c) shows a weak peak II, with polarization parallel to the polymer axis
and an intensity ratio with peak IIT of 1:12 (see Table 6.2). Table 6.1 indicates that,
in addition to the expected | — d} and d; — [* excitations, peak II has an 11%
contribution from d; — dj. This may result form the substitution-induced mixing
between the localized and delocalized bands.

The band structure and absorption spectrum of fully-optimized, non-planar OH-
PPV are shown in Figs. 6.2(d) and 6.5(d), respectively. In the optimized structure,
the vinylene bonds are rotated out of plane by about 20°, which can lead to mixing of
o and 7 bands. While the conduction and highest valence bands are similar to those
of the planar structure, significant differences are seen in the lower-energy valence
bands. In the absorption spectrum, peak II retains roughly the same intensity as for
the planar structure, but peak III loses intensity such that the ratio of the intensities is
1:7 (see Table 6.2). A similar behavior is seen in the band compositions of Table 6.1.
While the band composition of peak II stays roughly the same as for the planar
structure, peak III gains about 18% d; — df character. In OH-PPV, the rotation
of the vinylene by 20° has a significant effect on the intensity ratio of peak Il:peak
III, which is 1:12 for the planar structure and 1:7 for the nonplanar structure. In
unsubstituted PPV, a rotation of the vinylene by 20° has a much smaller effect,
changing the ratio from 1:24 to 1:27 (see Table 6.2).

As discussed in Sec. 6.3.2, m-electron models may include the effects of chemical
substitution by altering the energy of the p,-orbital on the carbon atom to which
the substituent is attached[52, 51]. We can apply a similar perturbation in INDO
theory, and Figs. 6.2(b) and 6.5(b) show the band structure and spectrum obtained
in INDO theory when the energy of the p,-orbitals on carbons 2 and 5 of Fig. 6.1 are
lowered by 1 eV. We will refer to this model as subs-PPV, and compare the results
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Figure 6.8: Energies of the states giving rise to peaks in the spectra of fully-optimized,
non-planar OH-PPV (Fig. 6.7), versus 1/N where N is the number of phenylene units
in the oligomer. The solid lines connect the points, and the dotted lines show the
results of a linear regression. The linear regression gives infinite chain limits of: peak
I (circles) 2.91 eV; peak Ib (squares) 2.48 eV; peak II (diamonds) 3.96 eV; peak
III (upward-pointing triangles) 5.19 eV; and peak IV (downward-pointing triangles)
5.70 eV.
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Figure 6.9: Oscillator strengths (intensities) for the states giving rise to peaks in the
spectra of fully-optimized, non-planar OH-PPV. The notation is as in Fig. 6.8. The
intensities are shown on a per-unit-cell basis, by dividing by the oligomer length, V.

with OH-PPV to determine how well this approach models the effects of chemical
substitution. Comparison of the band structure of subs-PPV and OH-PPV reveals
some substantial differences. In OH-PPV, mixing between localized and delocalized
bands occurs primarily within the valence bands, while in subs-PPV, mixing occurs
in both the valence and conduction bands and is a bit stronger in the conduction
bands. Despite these differences, the overall magnitude of the mixing between bands
appears fairly similar between subs-PPV and OH-PPV. It is therefore somewhat
surprising that the spectrum of subs-PPV shows roughly equal intensity for peaks
IT and III. Also, peak III has greater than 50% character for d; — d} excitations.
In summary, the subs-PPV model breaks electron-hole symmetry and gives peak II
substantial intensity, but the details of the symmetry breaking do not agree with the
results obtained for the actual chemical substitution of OH-PPV. This indicates that
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perturbing the energy of p-orbitals is not a good model of chemical substitution.

Although the subs-PPV model is quite similar to the m-electron models used by
Gartstein et al[51] and Chandross et al[52], there are some significant differences in
the results. The model of Gartstein et al[51] predicts that peak II is polarized per-
pendicular to the polymer axis while the model of Chandross et al[52] predicts the
polarization is parallel to the polymer axis. For the subs-PPV model, peak II is polar-
ized roughly 50% perpendicular and 50% parallel to the polymer axis (Fig. 6.5 (b)).
Note that in OH-PPV, peak II is polarized parallel to the polymer axis, and so the
perpendicular component appears to be an artifact of the subs-PPV model. Gartstein
et al[51] also predict peaks IT and IIT to have roughly equal intensity in the limit of
long chains, while Chandross et al[52] predict peak II to have substantial intensity
on oligomers but vanishing intensity in the long-chain limit. The subs-PPV model
predicts peaks II and III to have equal intensity on long chains. But again, the large
intensity in peak II is an artifact of the subs-PPV model, and peak II is predicted to
be weak for long chains of planar OH-PPV.

Finite-size effects are examined in Figs. 6.6 and 6.7, which compare the spectrum
of oligomers with between 4 and 8 phenyl rings with the spectrum obtained in the
limit of long chains. Fig. 6.6 shows that oligomers of PPV exhibit two new peaks,
labeled Ib and Ic, that approach peak I as the chain length is increased. We attribute
these transitions to states that have the same excitation as is present in peak I, but
with higher kinetic energy, i.e. they are higher particle-in-a-box states of the same
exciton that is present in peak I. These transitions will not be resolved in experiments
on amorphous samples, since amorphous samples contain a distribution of effective
conjugated lengths. The location of these peaks changes rapidly with chain length
and the average over the effective conjugation lengths will lead to a broad spectrum
that will appear as a background in the experimental spectrum.

OH-PPV also shows a peak, labeled Ib in Fig. 6.7, that approaches peak I with
increasing chain length. However, unlike PPV, OH-PPV also exhibits peak II with
a position that is relatively independent of chain length. The energies of the states
that give rise to the peaks in Fig. 6.7 are plotted against % in Fig. 6.8. The results

show that peak Ib is converging onto I in the long chain limit, while the other peaks
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are relatively independent of chain length. Fig. 6.8 also suggests that as the state
responsible for peak Ib crosses that responsible for peak II, it interacts and is repelled.
This raises the possibility that, as suggested by Chandross et al[52], peak II may be
borrowing intensity from Ib. However, Fig. 6.9, which plots the intensities of peaks
Ib, IT and IIT against %, shows little effect of the crossing of peaks Ib and II on the
intensities. This argues against peak II borrowing intensity from peak Ib.

Fig. 6.7 and Table 6.2 show that finite-size effects nearly double the intensity of
peak II relative to peak III. For non-planar OH-PPV, the intensity ratio of peak II
to peak III is about 1:4 for oligomers and 1:7 in the long chain limit.

To determine the validity of OH as a general model of alkoxy substitution, calcula-
tions were also done on a series of di-methoxy substituted PPVs, (MeO-PPV). There
is no visible difference in the OH-PPV and MeO-PPYV spectra, in both the periodic
and oligomer calculations. The intensities of the peaks change somewhat (Table 6.2),

but the conclusions obtained above for OH-PPV still apply.

6.5 Conclusion

The calculations presented here examine a number of factors that break electron-
hole symmetry and so give intensity to peak II. In all cases, the predicted polarization
of peak II is parallel to the polymer axis, in agreement with experiment[52, 54, 55].
The results are summarized in Table 6.2, which lists the ratio between the intensities
of peak II and peak III. The next-nearest neighbor transfer integrals present in INDO
theory cause the conduction bands to be narrower than the valence bands, and this
small breaking of electron-hole symmetry leads to an intensity ratio of 1:24. Chemical
substitution, modeled here as 2,5 di-hydroxy-PPV (OH-PPV), leads to strong mixing
between localized and delocalized valence bands. For a planar OH-PPV structure,
the predicted intensity ratio is 1:12. However, AM1 calculations on OH-PPV indicate
that the vinylene group rotates out of the plane of the phenyl rings by about 20°, and
this changes the intensity ratio to 1:7. Finite size effects further increase the intensity
of peak II relative to peak I, giving an intensity ratio of about 1:4 for oligomers with

between 4 and 8 phenyl rings. While this intensity ratio is still somewhat smaller than
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the experimentally observed ratio of about 1:1[52, 53, 54, 55, 56], the results presented
here indicate that chemical substitution, combined with the finite conjugation lengths
present in amorphous samples, leads to substantial electron-hole symmetry breaking

and gives considerable intensity to peak II.
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Chapter 7

Electron-hole symmetry breaking
in carbon nanotubes due to next

nearest neighbor interactions

7.1 Introduction

Carbon nanotubes have been actively studied since their initial discovery in 1991.]66]
Of particular interest are the conduction properties of carbon nanotubes, which
vary from metallic to semiconducting depending on subtle changes in the structure.
This, and other features of the electronic structure, have been studied using tight-
binding (Hiickel) models.[67, 68, 69, 70, 71, 72, 73] These tight-binding models include
only nearest-neighbor transfer terms, and the resulting electronic structure exhibits
electron-hole symmetry. Here, we develop a simple means for including next-nearest-
neighbor (NNN) electron transfer terms in tight-binding models of fullerenes. Such
terms break electron-hole symmetry, and the effects of this symmetry breaking on the
band gap and thermopower are examined.

The inclusion of next nearest neighbor terms has been found to be important in
the calculation of a number of chemical properties.[74]-[75] The addition of the next
nearest neighbor hopping has been shown to modify some of the energy gaps in Cg.[2]

Kim and Wu have also found that a simple 7-electron tight-binding model can explain
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Figure 7.1: A portion of a graphite sheet showing the location of the lattice unit
vectors @ and b and the characteristic armchair tube wrapping vector R for m = n.

The diameter of the resulting tube would be D = |TR|.

the low-energy excitation spectra of Cgy only if next nearest neighbor terms and on-site
electron-electron interactions are included.[76] Next nearest neighbor terms have also
been shown to have significant effects on the band structure of polydiacetylene.[74]
The inclusion of next nearest neighbor terms has also been used in the investigation
of the metal-insulator transition in materials and has been shown to be important
in the investigation of cuprate superconductors.[77]-[75] Judging by this previous
work on conjugated carbon systems, it seems that the inclusion of these next nearest
neighbor terms is necessary in the treatment of systems where the ratio between
nearest-neighbor and the next-nearest-neighbor hopping integrals is relatively large,
as is the case in the fullerenes, and graphene type structures.

A nanotubes may be viewed as a graphite sheet that has been wrapped into a tube
structure and capped at the ends by curved fullerene structures. The orientation of
the carbon-carbon bonds in the tube can be described by defining a wrapping vector
(ﬁ) that lies perpendicular to the tube axis, and has a length that is equal to the
circumference of the tube. This vector may be written as a linear combination of the
lattice vectors (& and b) of the graphite sheet R = ma + nb. The integer coefficients
(m, n) provide a convenient notation for the tube structure. The electronic structure
of nanotubes can be understood in terms of the band structure of a graphite sheet,
with the introduction of periodic boundary conditions that take into account the
finite circumference of the nanotube. These periodic boundary conditions serve to
quantize the crystal momentum perpendicular to the tube, and each allowed value of

the crystal momentum gives rise to a separate one-dimensional band of the nanotube.
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Nanotubes can be divided into general classes based on the orientation of B (Fig-
ure 7.2) and the general electronic properties of that tube type as predicted by
tight-binding methods. Figure 7.2(a) is referred to as an armchair, or perpendic-
ular, type of tube (m = n in R). Using a one-dimensional, tight-binding model with
only nearest neighbor hopping, armchair tubes have been predicted to have metallic
properties.[68, 69, 70, 71, 72, 73] The remaining two general classes of tubes occur
when m # n. Figure 7.2(b) is a zigzag or parallel tube (n = 0), which is predicted
to be metallic for m an integer multiple of 3 and semi-conducting otherwise.[70] The
last type (Figure 7.2(c)) is an example of a chiral tube (m # n # 0), in which the
carbon-carbon bonds have an orientation between that in the armchair and the zigzag

tube. Chiral tubes are predicted to be semiconducting.

7.2 Hiickel Theory and Graph Theory

The Hiickel Hamiltonian is a 7 electron model that includes one p-orbital for each

carbon atom (site) and allows electron transfer between adjacent sites,

H= Hon—site + Hnearest—neighbora (71)

or in terms of creation and annihilation operators,

IfIHu'ckel — Z aalaai,a -+ Z ﬂi,ja;',aaj,g, (72)

1,0 1£],0

Figure 7.2: A portion of a graphite sheet showing the orientation of the carbon-carbon
bonds for the three general classes of nanotubes. Tube (a) is an armchair tube, tube
(b) a zigzag or parallel tube, and tube (c) is a chiral tube. The dashed arrow shows
the direction of the tube axis. The bold series of carbon-carbon bonds and solid arrow
serve to illustrate how the orientation of the bonds differs in the tubes.
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Figure 7.3: The benzene molecule, its graph representation, and the resulting adja-
cency matrix.

where o is the electron spin, i,j are atomic sites, a'(a) is the creation (annihilation)
operator on the i*® carbon atom, o is the on-site potential, and 3 is the electron
transfer integral. In the basis of p-orbitals, the Hiickel models leads to a matrix of

the form

(i| A+ ) = a (7.3)
(i Ffckd |y — { B(r) if atoms i and j are bonded

, (7.4)
0 otherwise

where r is the bond length.

Chemical graph theory provides a convenient approach to Hiickel theory, as in
the general methods of [78] and [79]. The molecule may be represented by a simple,
unoriented graph, which consists of only vertices and edges, ¢.e., lines and points
(see Figure 7.3 for an example). In fact, the way in which the structural formula
of a molecule is normally represented by the chemist is essentially a chemical graph,
where the vertices of the graph are the atoms and the edges are the chemical bonds.

A listing of which atoms (vertices) are connected by bonds (edges) can be found

in the vertex adjacency matrix (hereafter adjacency matrix) of the graph, A (see
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Figure 7.3),

1 if atoms i and j are bonded
i,j - . (75)

0 otherwise

In a system where all bond lengths are equal, the nearest neighbor hopping terms,
B(r) of eq. (7.4), are all equal and the Hiickel matrix can be rewritten as a combination

of the identity matrix, I and adjacency matrices of the chemical graph,
H=ol+ A, (7.6)

Since H and A commute, they share the same set of eigenvectors[79, 78, 79, 80].
The molecular orbital energies are the eigenvalues of the Hiickel matrix and may be
written,

where ay, is the k™ eigenvalue of the adjacency matrix.[81]

7.3 Addition of Next Nearest Neighbor Terms

With the inclusion of next nearest neighbor terms, the Hiickel matrix has the

form,
(| AT = 79)
B(r) if atoms i and j are bonded
(i| HHickel |5y = v(r) if i and j are next nearest neighbors . (7.9)
0 otherwise

In benzene, Cgp, and infinite nanotubes, not only are all bond lengths equal, but the
distance between next nearest neighbor carbon atoms is also equal. This means that
B(r) and 7(r) have the same value for all pairs of atoms. The next-nearest neighbor
terms of the Hiickel matrix of eq. (7.8) may then be written in terms of the square
of the adjacency matrix, similar to the way the nearest-neighbor terms were added
using the adjacency matrix in eq. 7.6. When squaring the adjacency matrix, the off-

diagonal terms are 1 if and only if the two vertices are connected by a path of length
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two, or equivalently, are bonded to a common atom (see Figure 7.4 for an example).
The diagonal elements of A2 count the number of paths of length two that originate
and terminate on the corresponding vertex. This is equal to degree of the vertex, or
the number of bonds on a particular atom (2 for benzene, and 3 for Cgg, and infinite

nanotubes). The matrix elements of A? are given by,
n ifi=j
(Ai,j)2 =< 1 if there is a path of length 2 between 4 and j, with i # j , (7.10)

0 otherwise

where n is the degree of the vertices. The Hiickel matrix of eq. (7.9) may then be
written,

H= (a—ny)I+ A +~A% (7.11)

where —n+1 serves to cancel the diagonal matrix elements of A? in eq. (7.10).

As we saw in the previous section, since I, A and H commute, they have common
eigenvectors and therefore the molecular orbital energies were simply related to the
eigenvectors of the A (eq. (7.7)). This is also the case here, since A? commutes with
I, A, and H. The eigenvalues of A% are the squares of the eigenvalues of A. The

molecular orbital energies may then be written,
Ey = a — ny + Bay + va;. (7.12)

A similar result has been determined for Cg, using a basis of vectors for the nearest

neighbors of the carbon atoms.|2]

7.4 Electron-hole symmetry breaking

Electron-hole symmetry is present for m-electron models that include only nearest
neighbor transfer integrals, such as Hiickel theory[14], and chemical structures that
are alternant. In an alternant chemical structure, only carbon atoms participate in
the m-electronic structure and these carbons may be divided into two disjoint sets,
{A} and {B}, such that no carbon atom is bonded to another carbon atom in the same

set[39]. Benzene, Cgy and nanotubes are alternant structures (see Fig. 7.6). When
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Figure 7.4: A section of the graphite sheet showing the nearest and next nearest
neighbor atoms and an example of the square of the adjacency matrix for benzene.

Figure 7.5: Fullerene type structure (in this case Cgp) with only the bond framework
and front facing bonds shown for clarity.
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electron-hole symmetry applies, the valence and conduction band orbitals form pairs
with energies distributed symmetrically about the Fermi energy. In terms of the
adjacency matrix, electron hole symmetry implies that for every positive eigenvalue
of the adjacency matrix, ax, there exists a negative eigenvalue, —ay.[82]

The inclusion of next-nearest-neighbor interactions in Hiickel theory breaks electron-
hole symmetry. This can be seen in Eq. (7.12), where the next-nearest-neighbor terms
contribute to the orbital energies through the square of the eigenvalues of the adja-
cency matrix, ya2. Note that the electron transfer terms, 8 and v of Eq. (7.9), have
negative algebraic sign[39]. The positive eigevalues of the adjacency matrix, ay, there-
fore correspond to the valence bands. In the valence bands, the terms Bay and va?
of Eq. (7.12) have the same sign and so the next-nearest-neighbor terms increase the
width of the valence bands. In the conduction bands, aj, is negative and Bay, and va?
have opposite signs. The next-nearest neighbor terms therefore decrease the width of
the conduction bands. This clearly breaks electron-hole symmetry.

The electron-hole symmetry breaking in a metallic (5,5) tube is shown in Fig. 7.7).
Mintmire, Dunlap, and White[1] reported tight-binding results for the highest valence
(HOMO) band and lowest conduction (LUMO) band as

E(k) = £8[1 + 2cos(k)], (7.13)

where £ = 0..7 is the length of the wavevector along the I" reciprocal lattice direction,

and the Fermi energy is at zero. The HOMO and LUMO bands intersect one another

Figure 7.6: A portion of a hexagonal alternant sheet showing the partitioning of the
carbon atoms into two disjoint sets of starred and unstarred carbons. The eigenvalues
of the adjacency matrix in such a case are symmetric about zero.
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Figure 7.7: Plot of the highest occupied and lowest unoccupied bands for a (5,5)
carbon nantube (eq. 7.15) with and without next-nearest-neighbor interactions as
calculated using eq. 7.12.[1] Calculation of the bands including only nearest-neighbor
interactions are represented by the solid lines and the dashed lines represent the
calculuations done with the inclusion of next-nearest-neighbor interactions. S of
eq. 7.12 was set to -2.4eV [1] and 7 was set to 0.28 [2]. Crossing of the Fermi level
occurs at k = 2.

at the Fermi energy, when k£ = %

HOMO and LUMO bands of Eq. (7.13), are

7. The eigenvalues of the adjacency matrix for the

ar = £ [1+ 2cos(k)]. (7.14)
such that introduction of next-nearest neighbor terms leads to band energies
E(k) = £B8[1 + 2cos(k)] + v [1 + 2cos(k)]* . (7.15)

Fig. 7.7 shows the energies of these bands for f=-2.4eV, the value used in Ref. [1],
and v=0.20, as derived for Cgg in Ref. [2].
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7.4.1 Effects of electron-hole symmetry breaking on the band
gap

Here, we consider whether breaking of electron-hole symmetry alters the band gap.
Before introduction of next-nearest-neighbor interactions, the band gap is present
between a valence and conduction band that are related by electron-hole symmetry.
Consider the difference in energy between these bands after introduction of next-

nearest-neighbor terms,
Eop(k) = (o —ny + axf +ai’y)—<a —ny+ b B +biy)l, (7.16)

where a; and b, are the eigenvalues of the adjacency matrix for the conduction and
valence bands, respectively. Due to alternancy symmetry in the molecular structure,

ar = —by, and the Eq. (7.16) becomes
Egap(k) = 2 |Ba - (7.17)

The gap between the bands is therefore unaffected by the next-nearest-neighbor terms,

Y.

7.5 Effects of electron-hole symmetry breaking on

the thermoelectric power

Here, we examine the thermoelectric power (TEP) of single walled nanotubes
(SWNT). The thermoelectric power measures the electrical current that flows in re-
sponse to a temperature gradient. The sign of the thermoelectric power indicates the
sign of the predominant charge carriers in the material. Experimental measurements
of the thermoelectric power have, until recently, been performed in air, exposing the
nanotube to the presence of oxygen. Under these conditions, the thermoelectric power
of the tubes is found to be positive, indicating that holes are the dominant charge
carrier.[23] Recently, experiments have shown the extreme sensitivity of the thermo-

electric power of carbon nanotubes to the presence of oxygen.[83, 25, 84] Oxygen is
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believed to induce electron traps in the material, such that holes become the domi-
nant charge carrier. When care is taken to avoid oxygen contamination, the measured
sign of the thermoelectric power becomes negative, indicating that electrons are the
dominant charge carrier. Collins et al.[85] have found that at 350K, the TEP is
about —10%. Bradley et al. found that at 350K, the TEP is at least —60%. This
disagreement has not, to the best of our knowledge, been resolved.

In a system with electron-hole symmetry, the TEP is zero, since thermal excitation
will create equal amounts of electrons and holes and these electrons and holes will
have identical drift velocities. There will then be no net flow of current in response
to a temperature gradient. Breaking of electron-hole symmetry will lead to a nonzero
TEP, and here we derive an analytical expression for the TEP arising from next-
nearest-neighbor interactions in a single nanotube.

The standard Mott form for the drift thermoelectric power, in one dimension, is,

2k2T ! !
S = — 1% <U_+T_>, (7.18)
3e ) T

where v is the band velocity, 7 is the electron relaxation (scattering) time, and the
primes indicate derivatives with respect to energy.[23] The relaxation time is expected
to be relatively independent of energy[23], and so this term is typically ignored. We
will also adopt this approximation. The band velocity is given by v = l%@.[%]

h 8k
For eq. 7.12, the v and v’ are given by,
1 8Eneac nearestnet hbor(E) 1
vo= 2 L 81_:' 4 = ﬁ(5a§6+2fyaka§c) (7.19)
k 2B(k) Ok
o 81}_’_81} 8_’_8 (k) 0 (7.20)

dE(K) 0kOE(]) ok’ 0B(k)
1 Bay + 2yakay + 2v(a})?
h Baj, + 2yagay, '

where, here, the primes indicate differentiation with respect to k. Substituting

eqs 7.20 and 7.21 into eq. 7.18 the resulting expression for the %’ is,

2

v (a)*(8 + 2yax)’




100

For a system with alternancy symmetry, the contribution of the aj must cancel. For
instance, for the (5,5) nanotube of Fig. 7.7, the bands crossing at the Fermi energy
will lead to a} of equal magnitudes but opposite signs and thus make cancelling
contributions to the TEP. This is a consequence of the fact that for a system with
electron-hole symmetry, thermal excitation will create equal numbers of electrons and
holes and these will have equivalent velocities, v. Removing the contributions of a},
Eq. (7.21) becomes
v %)

v @6+ ) (722

This may be re-written in terms of the ratio between v and 3, C such that v = Cg,

we obtain )
v’ 2C (ay,) 2C
P 2 2 = 2" (7.23)
v Bay)"(1+2Ca)”  B(1+2Ca)
For a metallic (5,5) tube, the eigenvalues of the adjacency matrix, a; are given by
Eq. (7.14). The HOMO and LUMO bands intersect at the Fermi level for k = 2.
At k = 27, ay = 1+ 2cos(k) = 0. About the Fermi level and considering only the

HOMO and LUMO bands, eq. 7.23 reduces to,

v _40
v B
Mintmire et al. estimate that for the (5,5) tube 8 = —2.4eV, and in their study of
Ceo Wang et al. show that C of eq. 7.24 should lie between 0 and 0.5[1, 2]. Using
this range of parameters in Eqgs. (7.18) and (7.24) leads to a TEP of between 0 and
—O.OQ‘I;—ZT. The negative values of the TEP calculated using eq. 7.24 indicate that

(7.24)

the predominant charge carrier in the armchair nanotubes are electrons. This is
as expected, since the next-nearest-neighbor terms compress the conduction bands
and expand the valence bands (Fig. 7.7), leading to a higher thermal population of
electrons. At 350K, the predicted thermopower is between 0 and —7 % This is
in reasonable agreement with the measurement of —10% by Collins et al[85], and
considerably smaller than the measurement of greater than —60% by Bradley et
al[25].
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7.6 Discussion

This chapter derives a simple means for including next-nearest-neighbor transfer
terms in Hiickel calculations of certain types of carbon structures. The requirements
are that (i) all bond lengths be identical, (ii) the atoms must all have equal numbers of
nearest neighbors, and (iii) all next-nearest neighbor distances must be equal. These
conditions hold for benzene, Cgy and the infinite nanotubes that are the primary
subject of this chapter.

The next-nearest-neighbor terms break electron-hole symmetry in these systems.
Although this symmetry breaking has no effect on the band gap, it does alter the
thermoelectric power (TEP). When electron-hole symmetry applies, the TEP of a
single nanotube is zero. For reasonable estimates of next-nearest-neighbor interac-
tions, the TEP induced by such interactions can be as high as —7% at 350K. Ex-
perimental estimates include —10% and —60%. The results presented here suggest
that electron-hole symmetry breaking due to next-nearest-neighbor interactions may

account for a substantial portion of the TEP of nanotubes.
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Chapter 8

Dynamic dielectric screening and
exciton binding energies in

conjugated polymers

8.1 Introduction

In light-emitting-diodes (LEDs) based on conjugated polymers, an electron and
hole are injected into an undoped conjugated polymer, such as poly-(para-phenylene
vinylene) (PPV)[4, 87]. These charges migrate through the material and combine to
emit a photon. An important quantity for developing an understanding of this pro-
cess is the exciton binding energy, the difference in energy between a well-separated
electron-hole pair and the state that emits the photon. Standard semi-empirical
quantum chemistry models such as PPP[26], ZINDO|[27] or MNDOQ|28] yeild exciton
binding energies of greater than 2.5¢V, when applied to a single polymer chain. This
is much greater than the exciton binding energies seen in solid-state conjugated poly-
mers. For instance, there is general agreement that the exciton binding energy in
polydiacetylene is 0.5eV [88, 89, 90], and that photoexcitation of polyacetylene leads
to the rapid formation of both charged and neutral solitons[91, 92, 93]. In PPV,
experimental estimates for the exciton binding energy include near 0.0[94], 0.2eV[95],

0.4eV[96, 97], and 0.9¢V[98, 31]; and theoretical estimates include 0.4eV[99, 100] and
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0.9eV([31].

Many theoretical studies of conjugated polymers use a single-chain Hamiltonian
parameterized to solid-state observations. To obtain agreement with solid-state exci-
ton binding energies, the Coulomb repulsion between electrons must be substantially
weaker than that typically used in semi-empirical quantum chemistry[29, 30, 31].
This need to weaken the electron-electron interactions in a single-chain Hamiltonian
likely reflects the importance of Coulomb screening from adjacent polymer chains.
This paper continues our development of an electronic-polaron model that explicitly

includes Coulomb screening from adjacent chains. The model was originally applied

[4 4

to two polyene chains, one “solute” polyene and one “solvent” polyene. Recently,
this model has been extended such that the number of solvent chains is sufficient
to allow a reliable extrapolation to the solid-state limit. In both the two-chain and
solid-state calculations, the solute chain was described with a PPP Hamiltonian and
the solvent chains were described with Hiickel theory. Hiickel theory was used for the
solvent chains because it greatly simplifies the evaluation of the Hamiltonian matrix
elements. In this paper, the use of Hiickel theory for the solvent is tested and shown
to be a good approximation.

There are two important aspects to our electronic-polaron model. The first is the
use of electron-hole, rather than electron-electron, screening. In the parameterization
of a single-chain Hamiltonian to solid-state data, it is typically the electron-electron
interaction potential that is modified[29, 30, 31]. Here, we consider how interchain
interactions modify the electron-hole interactions present in the excited states. This
is analogous to models of three-dimensional semiconductors, where it is the electron-
hole potential, not the electron-electron potential, that is screened[101]. The second
important aspect of our model is the inclusion of the time-scale of both the electron-
hole motion and the solvent polarization. In electron-hole screening, the relevant
time-scales are those of the solvent polarization and the electron-hole motion. The
time scale of the solvent polarization is inversely proportional to the optical gap,
about 2eV. The time scale for electron-hole motion in the exciton is inversely propor-

tional to the exciton binding energy. (A non-stationary state prepared with a dipole

moment pointing to the left will oscillate to the right on this time scale.) When the
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exciton binding energy is only a few percent of the band gap, as in many inorganic
semiconductors[101], the electron-hole motion is orders of magnitude slower than the
solvent polarization. In such systems, the polarization of the surroundings can follow
the motion of the electron and hole and thus a screened electron-hole interaction po-
tential, such as that used Wannier exciton theory, is a good approximation.[101] But
in conjugated polymers, the exciton binding energies may be greater than 2.5eV for
an isolated chain and 0.5eV or larger in the solid state. A separation of time-scales
is then not apparent, and the timescales of both electron-hole motion and solvent
polarization must be included in the model.

The dynamic aspects of the electron-hole screening process play a central role
in establishing the exciton binding energy. Interchain interactions lower the exciton
binding energy because the “solvation energy” of the free electron and hole is greater
than the solvation energy of the exciton. In the free electron-hole pair states, the
charge fluctuations arising from electron-hole motion are slow and the polarization
of the surrounding chains can nearly follow the electron-hole motion. This leads to a
relatively large solvation energy for the free electron-hole pair states. In the exciton
state, the charge-fluctuations are quite fast, and the polarization of the surrounding
chains cannot follow the electron-hole motion. The exciton state is then only weakly
solvated. The electron and hole then shed their solvation cloud when they join to
form an exciton. This enhances the differential solvation of the free electron-hole pair
versus the exciton, and leads to a large reduction in the exciton binding energy.

Explicit inclusion of screening will likely lead to better transferability of param-
eters between different polymer systems. It should also allow detailed information
on molecules, either from experiment or high-level ab initio calculations, to be used
in the parametrization of solid-state models. The use of molecular data is especially
important when detailed solid-state experimental data is difficult to obtain, such as

when modeling the effects of chemical defects and physical morphology.
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Figure 8.1: Chemical structure of the system used to study the effects of interchain
interactions on the exciton binding energy. In all the calculations presented here, the
solvent chain has 15 unit cells. The solute chain length is varied in the calculations.

8.2 Computational Methods

8.2.1 Hamiltonian

The calculations are performed on a model system consisting of two polyenes,
one solute and one solvent chain, with the geometries shown in Figure 8.1. The

Hamiltonian is
H = Hsol +H50l1} + Hsolfsolv, (81)

where H*% is the solute Hamiltonian, H*?" the solvent Hamiltonian, and H* %% ig
the solute-solvent interaction Hamiltonian.
The solute is described using Pariser-Parr-Pople theory[26],
HSOl = Z I:_Ié’baj + Oéj’oil] (L;[’U(Li’g
1,7,0
1 . . A\
+§ZU(Pi = 1) pi+ D U(ry;) pibi (8:2)
i

1<j

where aia(ai,,,) creates (destroys) an electron with spin o in the p-orbital on the i

carbon, p; is the charge operator on the i** carbon, p; = 1 — a;-r,aai,a — a}:ﬁai,/j, and
r;; is the distance between carbons i and j. For the one electron terms, aj,"l-l, we
use nearest-neighbor transfer integrals of 5{°'=-2.228eV for single bonds and [35%'=-
2.581eV for double bonds. Both the electron-electron and nuclear-nuclear repulsions

are described with the Ohno potential,

Ur) = 14.397eV A (8.3)

2
\/(14.395@VA) + 72
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where U is the Hubbard parameter. I and U are chosen such that application of
the Hamiltonian to a single carbon atom yields the ionization potential and electron
affinity of an sp? hybridized carbon; I is set equal to the ionization potential of an sp?
hybridized carbon, 11.16eV, and U is set equal to the difference between the ionization
potential and electron affinity of an sp? hybridized carbon, U=11.13eV.[102]

The solute and solvent interact through Coulomb interactions,

Hsolfsolv — z U(TI,i) ﬁ[ﬁia (84)

i

where 7 is summed over solute atoms and [ is summed over solvent atoms.
We will compare the results from two different models for the solvent. The simpler

model is Hiickel theory,
Hsolv _ Z 0130}” aJUaIU'7 (85)

1,J,0
with as"“’ being nearest-neighbor transfer integrals, (3;°!* for single bonds and 35°)
for double bonds. The other solvent Hamiltonian is the PPP Hamiltonian of eq. 8.2.The
Hiickel Hamiltonian for polyenes has only two relevant parameters, the transfer inte-
grals for single and double bonds, 3° and (3;°. In the long-chain limit, both the
Bsotv — Bse|. The band width

, which is equal to the difference in energy between the top

band (free-charge) gap and optical gap are equal to 2
5.190l11 + Bsolv

of the valence band and the bottom of the conduction band. The Hiickel parameters

is set by 2

are chosen to mimic the PPP Hamiltonian. To keep approximately the same band
width as in PPP theory, we set the sum of the Hiickel transfer integrals to the sum of
the transfer integrals of PPP theory, (8% + 85°7) /2 = —2.4045eV. In PPP theory,
the optical gap can be quite different from the band gap. The choice of the Hiickel
gap depends on which aspect of PPP theory we are trying to mimic. The relevant
aspect here is the response of the solvent to charge fluctuations on the solute, i.e.,
the response to an external electric field. The Hiickel gap is thus set equal to the
optical gap from PPP theory, as calculated from the Random Phase Approximation
(RPA)[103]. The RPA gap is used because the linear response obtained from RPA
theory is equal to that obtained from time-dependent Hartree-Fock theory (TDHF).

The calculations discussed below use Hartree-Fock theory to calculate the polarization
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induced by the solute charge distribution, and are thus analogous to TDHF theory.
The RPA gap from PPP theory is 2.66 eV, so the Hiickel model for the solvent uses
92 folv +55’olv = 2.66eV.

8.2.2 Description of isoluted solute

The effects of interchain interactions on the exciton binding energy are obtained
by comparing the solvation energy of the exciton to that of a free electron (a polyene
anion) and a free hole (a polyene cation). The symmetry of the Hamiltonian is such
that the solvation energy of the anion and cation are equal. The isolated solute is

described with S-CI theory in a local orbital basis|26],

\Ilisolated neutral — cr 1/}r (86)
; ata

where " has a hole in the valence-band orbital centered on the a™ unit cell and an
electron in the conduction-band orbital centered on the r** unit cell. The summation
of eq. 8.6 is over all positions of the electron and hole, and the coefficients, c] are
determined variationally. The cationic polyene is described with the variational trial

form,

qlisolated cation — Z Cawa- (87)

where ), has a hole in the valence-band orbital centered on the a** unit cell.

8.2.3 Basis set for solvent polarization

The solvent is described using the following basis set. The basis function, ®y, is the
unpolarized solvent, i.e. the solvent in the absence of the ground state of the solute.
®7 is the Hartree-Fock ground state of the solvent in the presence of the solute charge
distribution corresponding to ¥". (The magnitude of the solute charge distribution is
multiplied by a constant scaling factor, ¢, for reasons to be discussed below.) @ thus
describes the polarization induced by a hole on the a** unit cell of the solute and an
electron on the 7** unit cell. Using this basis, the variational procedure can optimize

the magnitude of the solvent polarization by mixing the unpolarized function, ®,
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with the polarized functions, ®. The spatial distribution of the polarization can be
optimized by mixing together the various polarized functions, ®/. A similar basis is
used for the cation, consisting of the unpolarized solvent ®; and functions &, that
describe the polarization induced by a hole on the a* unit cell of the solute polyene.
The above basis sets are used to describe the polarization induced by an exciton
or hole delocalized over a polymer. These charge distributions are much more diffuse
than the charge distributions of 9, or v, which describe holes and electrons localized
at specific positions on the solute. Thus in generating ®, and @, the solute charge
distribution is multiplied by the scaling parameter, ( < 1. This is useful because
the localized charge distributions of 1, or ¢ can cause the solvent polarization to
respond nonlinearly. The basis set performs best when ( is chosen such that &, and
®” are not in the nonlinear regime[63]. In the calculations presented here, { = 0.2.

The calculation of the Hamiltonian matrix elements is discussed in the Appendix.

8.2.4 Simplified reaction-field model

The reaction-field model assumes the dielectric response of the solvent is much
slower than the charge fluctuations arising from electron-hole motion on the solute. In
the implementation used here, the electron and hole on the solute are first delocalized
as in Eqgs. 8.6 and 8.7, and the averaged charge distribution is then solvated. This
differs from the self-consistent reaction-field (SCRF) model[104, 105], which allows
interaction with the solvent to alter the solute charge distribution. Since the systems
studied here do not have a permanent dipole moment, our model should not differ
significantly from the SCRF model. An important exception is when solvation effects
are sufficiently strong that the SCRF model favors symmetry-breaking on the solute
chain. For instance, in the case of a charged polyene, the SCRF model may favor
the localization of charge on some portion of the chain. This charge localization is
not allowed in the reaction-field model used here, which assumes the solute charge
distribution is that of the isolated solute polyene.

The solvation energies are calculated by diagonalizing the solvent Hamiltonian,

including the interaction with the solute charge distribution, in the basis set described
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in Section &8.2.3.

8.2.5 Screened electron-hole interaction model

This limit is that of Wannier exciton theory[101], where the dielectric response
of the solvent is assumed to be much faster than the charge fluctuations arising
from electron-hole motion on the solute. The solvent polarization is then set by the
instantaneous position of the electron and hole, leading to dielectric screening of the
electron-hole interaction. This model is implemented by starting with the matrix
representation of the solute Hamiltonian, H** of Eq. 8.1, in the solute basis, 1, or ¢
of Egs. 8.7 and 8.6. The solvation energy of the charge distributions corresponding
to 1, or 1] are then calculated and added to the diagonal of the Hamiltonian matrix.
The resulting matrix is then diagonalized.

For the exciton calculation, the solvation energies are calculated from the Hartree-
Fock ground state energies of the solvent in the presence and absence of the charge
distributions corresponding to 97. As discussed in Section 8.2.3, the localized charge
distribution of 97 may induce a nonlinear polarization in the solvent. This is pre-
vented by first multiplying the charge distributions by the scaling factor (=0.2. The
calculated solvation energy is then scaled up assuming a linear solvent response, i.e.
the solvation energy of the scaled charge distribution is divided by ¢2. For the cation
calculations, the solvation energies are calculated using the basis set described in

Section 8.2.3.

8.2.6 Electronic Polaron Model

In the electronic-polaron model, the Hamiltonian of Eq. 8.1 is diagonalized in a
direct-product basis of solute and solvent functions[106]. The solute basis functions
are the 1, and ¢} of Egs. 8.7 and 8.6. The solvent basis functions are the &, and @]
described in Section 8.2.3. Since the full Hamiltonian is used and the matrix elements
are evaluated exactly (see the Appendix), no assumptions are made about the relative
time scale of electron-hole motion as compared to solvent polarization.

For the exciton calculation, the size of a complete direct-product basis scales as
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N%, N being the number of unit cells on the solute. To avoid this rapid increase in
the size of the basis with solute chain length, the following variational form is used
for the combined solute-solvent wavefunction,[107]

v=Y (dzcbo +Y c;;;',@;z) { S g (8.8)

ar o " — 1| < Mygg

A similar basis may be constructed for the cation. As myq, is increased, this basis
approaches the full direct-product basis. When my,, = 0, each solute function ]
is paired with the corresponding solvent polarization ®7; the spatial distribution of
the solvent polarization is thereby constrained to follow the motion of the electron
and hole on the solute, and the variational procedure adjusts only the magnitude of
the polarization by changing the ratio of the ¢ and d coefficients. With my,, > 0,
the solvent polarization may lag behind the motion of the electron and hole, and the
variational procedure has more flexibility in determining the spatial distribution of

the polarization.

8.3 Results

Figures 8.2 and 8.3 show the calculated solvation energies of a cationic polyene
and the 1B;, exciton state of a polyene, as a function of solute chain length.

The simplified reaction-field model of Sec. 8.2.4 assumes the solvent polarization is
much slower than electron-hole motion on the solute. The solvent polarization is then
set by the averaged charge distribution of the solute. Within this model, the exciton
state is non-polar and has zero solvation energy (Figure 8.3). For the cation, as the
solute chain length is increased, the solute charge distribution becomes increasingly
diffuse and the solvation energy tends toward zero (Figure 8.2). Soliton formation
will localize the solute charge distribution and lead to a finite solvation energy in the
long-chain limit. A reasonable estimate for the soliton size[108, 109] is about 14 unit
cells[110, 111]. This corresponds to a rather diffuse charge distribution, and a low
solvation energy in Figure 8.2. Within this model, the solvation energies obtained

using the Hiickel Hamiltonian for the solvent agree well with those obtained using
the PPP Hamiltonian.
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Figure 8.2: Solvation energy of a polyene cation due to interaction with a solvent
chain of 15 unit cells. The reaction-field, screened electron-hole and electronic-polaron
models are described in Secs. 8.2.4, 8.2.5, and 8.2.6. The solid lines and filled symbols
are the results obtained using the PPP model for the solvent. The dashed lines and
open symbols are the results obtained using the Hiickel model for the solvent.

At the opposite extreme is the screened electron-hole interaction model of Sec. 8.2.5,
which assumes the solvent polarization is much faster than electron-hole motion. The
solvent polarization is then set by the instantaneous position of the electron and hole,
thus screening the electron-hole interaction. In this model, the solvation energy of the
cation is that of a localized hole, and thus is relatively independent of chain length.
The solvation energy of the exciton is that appropriate for a screened Coulomb inter-
action between the electron and hole. For the cation, the solvation energies obtained
using the Hiickel Hamiltonian for the solvent agree well with those obtained using the
PPP Hamiltonian. However, for the exciton, there is substantial disagreement. This
is discussed further in Section 8.4.

The electronic-polaron model of Section 8.2.6 makes no assumptions about the
relative time-scale of electron-hole motion versus solvent polarization. Figures 8.2
and 8.3 show that the predicted solvation energies lie between those of the reaction-

field and screened electron-hole interaction models. This can be understood as follows.
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Figure 8.3: Solvation energy of the exciton state due to interaction with a solvent
chain of 15 unit cells. Notation is as in Figure 8.2. Using the PPP Hamiltonian of
the solvent only lag=0 results were obtained.

Formation of a polarization cloud around the electron and hole leads to a favorable
electrostatic interaction between the solute and solvent chains; however, the result-
ing increase in the effective mass of the electron and hole lowers the delocalization
energy. The electronic-polaron model includes these changes in effective mass, since
it calculates the matrix elements of the full Hamiltonian, Eq. 8.1, between the basis
functions of Eq. 8.8. However, the increase in effective mass is ignored by the screened
electron-hole interaction model, which modifies only the Coulomb interaction between
the electron and hole. The screened electron-hole interaction model thereby overesti-
mates the solvation energy of both the exciton and the cation. The solvation energies
obtained using the Hiickel Hamiltonian for the solvent agree well with those obtained

using the PPP Hamiltonian.

8.4 Conclusions

Figures 8.2 and 8.3 show that, with one exception, the solvation energies obtained

using the Hiickel Hamiltonian for the solvent agree well with those obtained using
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the PPP Hamiltonian. That Hiickel theory is a good approximation is not surprising
since Hiickel theory provides a reasonable description of the linear response of a
conjugated polymer to an applied electric field. Unlike dielectric continuum models,
which implicitly assume a solvent made up of point dipoles, Hiickel theory captures
the delocalized electronic structure of the solvent. Hiickel theory also contains the
correct time-scale for the dielectric response, an issue of importance to the electronic
polaron model. This time-scale is set by the optical gap and the Hiickel parameters
were chosen to yield same optical gap as PPP theory.

While there is in general good agreement between the Hiickel and PPP models for
the solvent, Figure 8.3 indicates a rather large disagreement between for the solvation
energy of the exciton in the screened electron-hole model. In the screened electron-
hole model, the solvation energies of the charge distributions associated with various
positions of the electron and hole, 1), are calculated and added to the diagonal of
the S-CI matrix (see Section 8.2.5). The disagreement between the Hiickel and PPP
models indicates that these two Hamiltonians find different solvation energies for
these charge distributions. This is surprising since they agree on the solvation energy
of the cation (Figure 8.2), and thus agree on the solvation energy of a hole located
at various positions on the chain, v,. We are currently investigated the origin of this
disagreement.

The electronic-polaron model makes no assumptions about the relative time-scale
of electron-hole motion versus solvent polarization, and so is the most accurate model
considered here. Within this model, the Hiickel Hamiltonian for the solvent gives
solvations energies that are in good agreement with those obtained using the PPP
Hamiltonian. The use of Hiickel theory is much less computationally intensive than
PPP theory, and allows us to include up to 18 solvent chains with 80 carbons each.
This is sufficient to allow extrapolation to the solid-state limit. The agreement be-
tween the Hiickel and PPP models for the solvent validates the use of Hiickel theory in
these calculations, and confirms that the dynamic dielectric response plays a crucial
role in establishing the exciton binding energy in conjugated polymers.

Interchain interactions lower the exciton binding energy because the “solvation”

energy of the free electron and hole is greater than the solvation energy of the exciton.
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For instance, in Figure 8.2, the electronic-polaron model predicts that the solvation
energy of a free hole (a cation) is about 0.15eV. Since, for the Hamiltonian used here,
the solvation energy of an electron is equal to that of a hole, the free electron-hole
pair states are solvated by about 0.3eV. This solvation energy is large because the
charge fluctuations arising from electron-hole motion are slow and the polarization
of the surrounding chains can nearly follow the electron-hole motion. In Figure 8.3,
the electronic-polaron model gives a solvation energy for the exciton of about 0.04eV.
That the solvation energy of the free electron-hole pair states is nearly an order of
magnitude larger than that of the exciton remains true in the solid-state limit. The
solvation energy of the exciton state is small because the charge-fluctuations arising
from electron-hole motion are fast, and the polarization of the surrounding chains
cannot follow the motion of the electron and hole. While interchain interactions have
a large effect on the exciton binding energy, they have relatively minor effects on the
exciton state itself. The electron and hole must shed their solvation cloud when they
join to form an exciton. This consequence of dynamic dielectric screening enhances
the differential solvation of the free electron-hole pair versus the exciton, and leads
to a large reduction in the exciton binding energy.

More generally, the electronic polaron model predicts that the effective strength
of the dielectric medium varies from state to state depending on the time-scale for
charge fluctuations (electron-hole motion) in that particular state. This observation
may help resolve many long-standing questions concerning the relative importance of

electron-electron interactions in these materials.
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8.6 Appendix

8.6.1 Evaluation of the matrix elements

In the electronic polaron model, the Hamiltonian of eq. 8.1 is diagonalized in
a direct-product basis of solute and solvent basis functions. Here, we consider the
evaluation of the Hamiltonian matrix elements needed in this procedure. The solute
basis functions are those of S-CI theory, and the matrix elements are the standard
elements of configuration-interaction theory[112]. The solvent basis functions, & and
®7 discussed in Section 8.2.3 describe the solvent in the presence of various solute
charge distributions. We will derive expressions for the matrix elements between
any two of these functions, denoted ® and ®. These functions are the Hartree-Fock
ground state of the solvent in the presence of various solute charge distributions, and

so are single Slater determinants,

S =ala...|0); ®=alal...|0), (8.9)

1,

%

spin-orbital ¢, of ®.

where a,; creates an electron in spin-orbital ¢; of ®, and E}L creates an electron in

The overlap between ® and ® is the following determinant of the spin-orbital

(@]0)-

where 5% is a matrix holding the overlaps between the occupied spin-orbitals,

overlap matrix,

57 (8.10)

S35 = {bilé) 5 4,5 = 1. Noce, (8.11)

and N, is the number of occupied spin-orbitals in ® and ®.
The matrix elements of a one-electron operator, Ol, may be obtained by first

expanding the operator in the spin-orbital basis of &,

Ol = ZOi,ja}Laj, (812)
%]

where O;; = (¢;|O1|¢;). When O is applied to |®), it generates singly-excited

configurations, ®7, in which an electron has been promoted from a filled spin-orbital,
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a, to an empty spin-orbital, 7. The overlap between this singly excited configuration

and @ is then similar to the overlap in eq. 8.11, with the a*® column of S°¢ replaced

as follows,
- goce (i £ q
(@ ‘ ;) = Sa i (Sa)iy = { <j$] (:J;ij )_ ; (8.13)
The matrix element of O; may now be written,
<6| 0, |®) = |5 D 0ua+D0ma|Sy, (8.14)

where a is summed over the occupied spin-orbitals of ® and r is summed over the
unoccupied spin-orbitals of ®.

Evaluating the determinant | ég\ is a potentially expensive step, especially since it
occurs inside a two-fold orbital summation. However, a large simplification may be
goce

achieved by writing as,

S occ

=Y S5Ciy, (8.15)

where (' is the matrix of cofactors of S°“. The determinant of g can be then be

obtained from,

Sa

1€oce

9r) Cia =S| 3 (i | ér) (S s (8.16)
1€occ

where the cofactor matrix has been written in terms of the inverse of S°°. The
computationally expensive matrix inversion needs to be done only once for each set
of functions, ® and ®.

The above is sufficient when the Hiickel Hamiltonian is used for the solvent since
both it and the Coulomb interactions with the solute, are one-electron operators.
However, when the PPP Hamiltonian is used for the solvent, it is also necessary to
evaluate the two-electron operator,

0o = 3 (i jlk Dalalaay, (8.17)

2 iajyk;l

where (i j|k [) is the two-electron integral between spin-orbitals in physicist’s notation[112].

This is much more difficult than the one-electron operator, because when Oy operates
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on @ it generates both singly-excited, ®7, and doubly-excited, @Z‘z configurations. So
in addition to evaluating S, of eq. 8.16, it is necessary to evaluate,
St (G # a5 #0)
(@ |aps) =505 (sa;b)i,j — <_i ) (j=a) (8.18)
(] &) (5 =10)

The matrix elements of Og are then,

— A 1 r T8
(@0s]@) = 5 3 (abllab) S|+ 3 (rblad) ST > (rsllab) S5, (8.19)
a,b€occ a,b€occ a,bEocc
réunocc r,s€unocc

where (ab||ab) = (ablab) — {ab|ba). The third term of eq. 8.19 is computationally
expensive, due to both the four-fold orbital summation and the double substitution

in |:’l;’,s .

The basis functions ® and ® are restricted Hartree-Fock ground states and thus
have doubly-occupied spatial orbitals. It is convenient to rewrite eq. 8.19 in terms
of summations over spatial orbitals. A simplification results from the fact that the
overlap matrices 5%, S and é;f) are block diagonal in the spin coordinate. In par-
ticular, when a and b have different spins, the determinant of the doubly-substituted
spin-orbital matrix, S}, may be written as the product of the determinants of two

singly-substituted spatlal—orbital matrices. In terms of spatial orbitals, eq. 8.19 be-

comes
(@10:00) = 3 (2(ablat) — (@ba) || + X (Afrvla) - 2Arblba)) |3 |3
a,bEocc a,bEocc
TEUNOCC
+ > (rslab)|S|[STs| + X (rslab)|S|S3. (8.20)
a,bEocc a,bEocc
T, SEunocc T, SE’U/I’LOCC

The determinant may be simplified in a manner similar to that used in

Sr,s
=a,b
eq. 8.16. This is accomplished by considering S”} as resulting from a single excitation

T
=q’

— -1
Syl = (@ilos) [S7], - (8.21)
i€occ ’
Substituting eq. 8.16 into eq. 8.21 then leads to,
-1
Sl =18 X @len(@ilen) (879} [S0],, (8.22)

i,j€occ
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When Hiickel theory is used for the solvent, the most computationally expensive step
is the evaluation of eq. 8.16. PPP theory is much more computationally demanding,

since it requires the evaluation of eq. 8.22.
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