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The effects of torsional degrees of freedom on the excited-state relaxation of conjugated 

oligomers in solution are explored computationally by coupling an exciton model of the 

oligomer to a Brownian dynamics model of the solvent. The exciton model assigns one torsional 

degree of freedom to each unit cell, or site, of the oligomer. A simple molecular mechanical form 

is used for the ground electronic state. The excitation energy is obtained assuming coherent 

coupling between sites that is proportional to the cosine of the difference in torsional angles. The 

solvent is characterized by a single parameter, which is equivalent to setting the rotational 

diffusion time, trot, of a single unit cell about the oligomer axis in the absence of any internal 

forces. The relaxation of long oligomers exhibits a fast component, with a time constant that is 

about 0.025 trot and a slow component that is about 0.15 trot. As the oligomer length is decreased, 

the time constant for the slow component decreases such that the bi-exponential behavior 

smoothly diminishes below 10 unit cells, nearly disappearing by 3 unit cells. Comparisons of the 
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exciton model, which includes self-trapping, with molecular mechanics and harmonic oscillator 

models, which do not include self-trapping, show similar behaviors. The double exponential 

behavior therefore appears to be a general consequence of the participation of many torsional 

degrees of freedom in establishing the excitation energy. Since the time scales are relatively 

independent of the details of the torsional potential, experimental measurements of relaxation 

due to planarization report primarily on trot. 

1. Introduction	
 

Conjugated polymers have torsional degrees of freedom that are typically quite floppy. These 

degrees of freedom are an essential feature of the material, since they impart the flexibility 

required for the materials to be soluble and processable. These floppy degrees of freedom also 

lead to structural disorder, which plays a central role in the photophysics by establishing, for 

instance, spectral line shapes1–4 and wavefunction localization.5,6 Here, we explore the effects of 

torsional relaxation on the time-evolution of the first excited state for conjugated oligomers in 

solution. By using a relatively simple model for the electronic excitation and Brownian dynamics 

to include the effects of solvent, we can obtain converged ensemble averages of the relaxation 

behavior. Of particular interest is the bi-exponential nature of the time evolution, and the factors 

that influence the relaxation time scales. 

The model explored here focuses on the planarization of an oligomer due to the presence of the 

excitation. This planarization results from an increase in the torsional potential upon photo-

excitation, and contributes to the spectral relaxation in the tens of ps time range.4,7–18 On longer 

oligomers, this leads to self-trapping of the excitation onto a localized, planarized, region.5,6 The 

effects of the self-trapping on the time dynamics are explored by comparing results obtained 
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from an exciton model, that includes self-trapping, with simpler models in which self-trapping 

does not occur. The model focuses on only the planarization in the lowest excited state, and 

ignores other effects that influence the spectral relaxation. The formation of exciton-polarons due 

to stretching degrees of freedom is expected to occur on a much faster time scale than the 

torsional relaxation19,20 and is not included. Hopping of the excitation between different localized 

regions on the same polymer chain and between adjacent chains is also not included, and such 

phenomena may occur with time scales that are similar to those from the planarization explored 

here.21–23 The ultrafast relaxation that arises from non-adiabatic electronic relaxation, which has 

recently been shown to occur from highly-excited electronic states24 is also not included. 

 

Section 2 discusses the models used for both the excitation energy and the Brownian 

dynamics. Section 3 discussed the data generation and the fitting used to extract time constants 

from the dynamics trajectories. Section 4 presents the results, following by concluding comments 

in Section 5. 

2. Model	
 

Exciton (EX) Model 

 

We begin by considering an Exciton model (EX), which views the excited state as containing 

an exciton that hops coherently between generalized sites (unit cells) of an oligomer. We then 

consider simplifications that remove self-trapping effects and nonlinearity of the torsional 

potential. In the EX model, each site has a single torsional degree of freedom, i, as shown in 
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Figure 1. The torsional potential in the ground state is modeled with a simple molecular 

mechanical form, written as: 
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where i is the angle of the ith ring, and Vgs is the magnitude of the torsional potential. This is the 

lowest order trigonometric form that has a minimum for the planar structure and a maximum for 

all rings twisted to 90 degrees. 

The excited state model assumes that the exciton hops coherently between sites, with a 

coupling term that depends on the angle between the adjacent rings,  1coses i i    , as shown 

in Figure 1. The excitation energy is modeled as the lowest eigenvalue of the following 

Hamiltonian. 
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The form  1coses i i     was obtained from fits of the above model to INDO calculations, 

on a series of poly-phenyleneethynylene (PPE) oligomers with varying chain lengths and 

dihedral angles.25 The total energy of the excited state, Ees, is the sum of the ground state energy 

of Eq. (1) and the lowest eigenvalue of Eq. (2). 
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This model includes self-trapping of the exciton on a region of the polymer chain, due to 

planarization of the oligomer in the vicinity of the exciton. Since stretching degrees of freedom 

are not included in the model, the additional self-trapping expected from C-C stretches is not 

included.2,20,26 The time scale associated with self-trapping from C-C stretches is sub-

picosecond, and occurs much more rapidly than the planarization of the oligomer, which is the 

target of this work.19,27 

Results are shown below for Vgs of Eq. (1) having values between 0 and 6 kcal/mol, based on 

the range expected for conjugated polymers (2.3 kcal/mol for poly-paraphenylenevinylene, 

PPV28, 2.3 kcal/mol for poly-fluorene, PF8, and 0.6 kcal/mol for poly-phenyleneethynylene, 

PPE1, ~9 kcal/mol for poly-thiophene, PT29,30). The excited state coupling, βes, establishes the 

exciton band width. We compare results for βes = -10, -20, and -30 kcal/mol, which also spans 

the range expected for conjugated oligomers. 

 

Molecular-Mechanics (MM) Model 

 

In the above EX model, the presence of the exciton increases the torsional potential in the 

vicinity of the exciton, and leads to self-trapping onto a planarized region of the oligomer. To 

isolate the effects of self-trapping, we compare results to those obtained with a molecular-

mechanics (MM) model that treats the excitation as increasing the torsional potential uniformly 

across the oligomer. This is done by using the following molecular mechanics form for the 

excitation energy: 
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where Ees-planar is the excitation energy of a planar oligomer. The torsional potential has the same 

form as the ground state of Eq. (1) but with a different barrier, Ves. The value of Ees-planar has no 

effect on the time dynamics explored below. Results are shown for values of Ves between 0.6 and 

6.0 kcal/mol. These were chosen to be roughly equivalent to the excited state torsional potential 

resulting from the values of βes used in the EX model. However, it is not possible to choose a 

value of Ves that would map onto a given βes for all chain lengths. Consider the effect on the 

excitation energy of twisting the chain such that all torsional angles are 90 degrees. For long 

chains within the EX model, such twisting raises the excitation energy by 2 |βes|. Within the MM 

model, such twisting raises the energy by an amount, (N-1)(Ves - Vgs), which does not saturate 

with increasing chain length. For these to agree on an oligomer with length N, Ves of the MM 

model should be about |βes|/N. This difference in behavior with chain length reflects the lack of 

self-trapping in the MM model. In the EX model, as the exciton localizes, the torsional barrier 

increases only in the vicinity of the exciton, such that the excitation energy has the correct 

behavior of saturating with chain length. We consider Ves values from 0.6 to 6 kcal/mol, to cover 

the range corresponding to oligomers with length 5 to 10 for βes from -10 to -30 kcal/mol. 

 

Harmonic Model 

 

To further simplify the model, we replace the cosine potentials of Eqs. (1) and (3) with a 

harmonic potential, creating a Harmonic Oscillator model (HO). The excitation energy in the HO 

model is 
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where Ves is the energy associated with twisting one inter-ring angle of the oligomer from 0 to 90 

degrees. The range of Ves is thus the same as used above for the MM model. Comparison with 

the MM model thus explores the effects of nonlinearity in the torsional forces on the time 

dynamics. 

 

Brownian Dynamics 

 

To model planarization of conjugated oligomers in solution, we use Brownian dynamics to 

include solvent effects. In Brownian dynamics, the solvent gives rise to both stochastic forces 

and friction, via the following31 
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where θi and vi are the torsional angle and velocity, respectively, of the ith unit cell, and ai is the 

acceleration due to forces calculated as analytical derivatives of the torsional potentials described 

above, 
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Here I is the moment of inertia of a ring, taken as the polythiophene (PT) value of 91.1 amu·Å2. 

The friction coefficient, γ in Eq. (5), is the same for all sites, which assumes that the solvent 

effects are isotropic and independent of the system configuration. Finally, the random force term, 

Ai(t) of Eq. (5), is a stochastic Gaussian process given by: 
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The random force in Eq. (7) is related to the solvent friction by the fluctuation-dissipation 

theorem, such that the model contains only one parameter, γ, which defines the nature of the 

solvent. Rather than quote the value of γ below, we quote the rotational diffusion time, trot, of a 

single unit cell that arises from the solvent in the absence of any intra-molecular forces. Note that 

this is the diffusion time for rotation of a unit cell about the polymer axis, as opposed to the 

rotational diffusion time of a free unit cell in solution. The relation between γ and trot is linear, as 

shown in Figure 2. Below, we compare results for trot of 7.5 and 225 ps. 

3. Computational	methods	
 

Data Generation 

 

For each model and set of parameters, 10,000 trajectories were run and the excitation energy as 

a function of time was averaged. Each trajectory has an equilibration phase of 200 time steps, in 

which the torsional potential is that of the ground state. In this equilibration phase, the time step 

is 48.9 fs for trot = 7.5ps and 146.7 fs for trot = 225 ps. This is followed by a relaxation phase of 
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1500 time steps, in which the potential is that of the excited state. In the relaxation phase, the 

time step is one tenth that of the equilibration phase. Decreasing the above time steps by a factor 

of 5, while keeping the total time the same, leads to relaxation time constants in agreement to 

within 2% of those obtained with the larger time step, as shown in Table 1. 

 

Data Fitting 

 

The excitation energy is averaged over 10,000 trajectories, to give an ensemble average of 

excitation energy versus time. This is then fit to extract time constants for the relaxation of the 

excitation energy. Relaxation on chains with 3 or more unit cells involves two distinct time 

scales. Figure 3 shows typical results for all three models. The black circles are the ensemble 

averaged relaxation data (raw data), with time 0 being the point at which the excitation occurs. 

Fits are shown to both single and double exponential forms. In all three models, the double 

exponential form leads to a substantially better fit, indicating that there are two discernible time 

scales in the data. 

 

For chains with only two unit cells (N=2), the relaxation behavior is not well described by 

exponential decay forms. Results for N=2 are discussed in Section 4 regarding memory effects, 

but are otherwise not included in the discussion. 

4. Results	
 

Exciton delocalization 
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The models considered here include only torsional degrees of freedom. Inclusion of stretching 

degrees of freedom will lead to formation of exciton-polarons. Formation of such exciton-

polarons is expected to occur in tens of femtoseconds, after which the relaxation is dominated by 

the slower torsional degrees of freedom considered here.19 However, in addition to an ultrafast 

component to the relaxation, exciton-polaron formation also contributes to self-localization of 

the exciton. In the EX model, localization arises only from disorder in the torsional degrees of 

freedom. 

Figure 4 shows the localization length of the excitons within the EX model, as defined by the 

participation ratio.5,6 As the magnitude of βes increases from -10 to -30 kcal/mol, the localization 

increases from 8 to nearly 14. For βes of -30 kcal/mol, the localization length may be larger than 

is reasonable for an exciton-polaron and this may limit the reliability of the EX model. 

 

Memory Effects 

 

To better understand the nature of the dynamics, we consider memory effects in the relaxation. 

By memory, we mean the degree to which future relaxation depends on the past history. Figure 5 

shows results for chain lengths of N=2 (upper panels) and N=10 (lower panels) for the three 

models discussed in Section 2. Consider first the EX model with chain length N=2. Three 

trajectories are shown, which have different ground state potentials but the same excited state 

coupling, βes = -30kcal/mol. Since the excited-state relaxation begins with an ensemble 

equilibrated to the ground state potential, the three trajectories start with different degrees of 

planarity. Since the excited state coupling dominates the excited-state potential, all three 

trajectories are relaxing to nearly the same final ensemble. The relaxation is monitored through 
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the excitation energy, which is related to the average torsional angle of the system. The 

trajectory, Energy(t), for which Vgs = 0.6 kcal/mol starts furthest from planarity, and by 0.06 ps 

has relaxed to a point where the average energy is equal to the starting energy of the trajectory 

for which Vgs = 1.5 kcal/mol. In Figure 5, the Vgs = 1.5 kcal/mol trajectory has been shifted by 

0.06 ps, such that if there were no memory effects, the two trajectories would superimpose. The 

deviation is such that the trajectory that started further from equilibrium relaxes more rapidly 

towards equilibrium. This is as expected for inertial behavior, since the trajectory that started 

further from equilibrium has picked up momentum. A similar displacement of the Vgs = 2.5 

kcal/mol trajectory shows the same type of memory effect. 

The opposite behavior is seen for chains with length N=10, as shown in the lower left panel of 

Figure 5 for the EX model. In this case, the trajectory that starts further from equilibrium relaxes 

more slowly towards equilibrium. The factors that contribute to this can be explored by 

comparison with the other models. For N=2 within the MM and HO model, the memory effects 

are more complex. Trajectories that start closer to the equilibrium state initially relax slower and 

then catch up and surpass trajectories that start further from equilibrium. (This crossing of 

trajectories is more visible in Figure 5 for the HO model, but is also present in the MM model.) 

From this, we can conclude that, for N=2, the inertial memory effect seen within the EX model 

results from the particular form of the excited state potential within the EX model. For longer 

chains, similar memory effects are seen for all three models. This indicates that the memory 

effects on longer chains is a result of having multiple torsional degrees of freedom and is not 

sensitive to the particular form of the excited state potential. Below, we will show that as chain 

length increases, the slow component of the relaxation plays an increasing important role. The 
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presence of a slow exponential component is able to account for the type of memory effects seen 

on long chains. 

 

Chain Length Dependence of the Relaxation 

 

Figure 6 through Figure 8 show results from double exponential fits to the energy relaxation 

obtained from each of the models, for various parameter choices. Some common behaviors are 

seen across all models and parameters. On long chains, a slow relaxation component is observed 

with a time constant that is approximately an order of magnitude larger than the fast component. 

The relative amplitude of this component is substantial, approximately 40% for the EX model 

and 20% for the MM and HO models, such that the slow component dominates the relaxation 

behavior at long times. As one moves to shorter chains, the time constant of the fast component 

remains roughly constant, while that of the slow component approaches that of the former. The 

decrease in the time constant of the slow component with decreasing chain length is similar 

across all three models, suggesting that this phenomenon arises from averaging over multiple 

torsional degrees of freedom, and is independent of the specific nature of the excited state 

potential. The time constant of the slow component becomes roughly constant beyond chain 

lengths of about 10, which is comparable to the delocalization length. However, since only the 

EX model includes self-trapping of the excitation onto a region of the chain, and similar 

behaviors are seen across all three models, the presence and behavior of the slow component is 

not related to self-trapping and instead must arise solely from averaging across multiple degrees 

of freedom. The slow component is also not due to slow cooling, since the temperature derived 
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from the average kinetic energy of the torsional degrees of freedom of the oligomer returns to 

room temperature quickly following excitation (data not shown). 

Some differences between the EX and the MM and HO model are apparent in the amplitudes 

of the slow component, shown in the lower panels of Figure 6 through Figure 8. On long chains, 

the relative magnitude of the slow component in the EX model is roughly twice that seen in the 

MM and HO models. In addition, as one moves to shorter chains, the MM and HO model predict 

substantial increases in the relative amplitude of the slow component. A similar effect is not seen 

in the EX model, although we note that the relative amplitude of the slow component within the 

EX model becomes noisy on short chains. This noise may reflect difficulties associated with 

resolving relaxation components with similar time constants. In addition, since systems with 2 

rings do not exhibit exponential decay behavior, this noise may also reflect dynamics on short 

chains that are not well described by a bi-exponential form. Nevertheless, the results clearly 

indicate that as chain length is increased, a slow component appears in the relaxation behavior. 

Figure 7 shows the effects of altering the ground-state potential, while keeping the excited-

state potential fixed. In all cases, changes in the excited state potential have a larger effect on the 

slow component than on the fast component, with the effect on the fast component being 

negligible in the EX model. In the EX model, the slow component becomes somewhat faster as 

the ground-state potential is increased. The opposite behavior is seen in the MM and HO models. 

However, in all cases, the effects of the potential on the time constants are relatively small. 

Figure 8 shows the results obtained when the rotational diffusion time of a single ring, trot of 

Figure 6, is increase by a factor 30 to 225 ps. Comparison with Figure 6 reveals that the time 

constants of both the slow and fast components increase by roughly a factor of 30, while the 

relative amplitude of the slow component remains about the same. The time constants are thus 
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roughly proportional to trot. The simulation results therefore provide the expected time constants 

for the excited-state relaxation as multiples of trot, where trot characterizes the effects of the 

solvent on the rotational dynamics of a single ring. A range of 10 to 300 ps for trot, as may be 

reasonable for oligomers with varying types of side chains and in various solvents, leads to a 

predicted range of about 1.5 to 45 ps for the slow component, with the fast component being 

about six times faster (0.25 ps to 7.5 ps). The predicted slow component is consistent with the 

10’s of ps relaxation components that have been attributed to torsional degrees of freedom.4,7–18 

5. Conclusions	
 

The simulations performed here examine the contribution of torsional degrees of freedom to 

the excited-state relaxation of conjugated oligomers. The use of a relatively simple model for the 

excitation energy allows extensive ensemble averaging, such that the presence of two time scales 

can be discerned in the relaxation behavior of long oligomers. The model contains a single 

parameter that characterizes the solvent, and this parameter can be viewed as setting the 

rotational diffusion time, trot, of a single polymer unit cell about the polymer axis in the absence 

of any internal forces. The relaxation of long oligomers exhibits a fast component, with a time 

constant that is about 0.025 trot and a slow component that is about 0.15 trot. As the oligomer 

length is decreased, the time constant for the slow component decreases such that the bi-

exponential behavior smoothly diminishes below 10 unit cells, nearly disappearing by 3 unit 

cells. (For 2 unit cells, the behavior is not well described by single or double exponential forms). 

Comparisons of an exciton model, which includes self-trapping, with molecular mechanics and 

harmonic oscillator models, which do not include self-trapping, show similar behaviors. 

Likewise, the behavior is not strongly dependent on the parameters that define the strength of the 
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ground and excited state torsional potentials. The double exponential behavior therefore appears 

to be a general consequence of the participation of many torsional degrees of freedom in 

establishing the excitation energy. Since the time scales are relatively independent of the details 

of the torsional potential, experimental measurements of relaxation due to planarization report 

primarily on trot, the rotational diffusion time of a single ring about the polymer axis. Assuming 

the 10 to 40 ps relaxation times4,7–18 attributed to torsion relaxation correspond to the slow (0.15 

trot) component, this suggests trot of these systems is in the range 60 to 250 ps. 
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Figure 1. Schematic representation of the exciton model used for the excited states. Each unit 

cell is a site with energy α, with coupling between sites as shown. 

 

 

Figure 2. Linear dependency of the rotational diffusion time of a single ring versus the friction 

coefficient of Eq. (5). 
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Figure 3. Fits of relaxation data to single and double exponentials. The simulations are for N=20 

and trot = 7.5 ps, with potentials: EX model (left) Vgs = 0.6 kcal/mol, βes = -30 kcal/mol; MM 

model (center) Vgs = 0 and Ves = 6 kcal/mol; HO model (right) Vgs = 0 and Ves = 6 kcal/mol. 

 

 

Figure 4. Localization length as a function of the ground state potential, Vgs. 
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Figure 5. Memory effects for the EX model (left), the MM model (middle), and the HO model 

(right). The upper panels are for a chain length of 2. The lower panels are for a chain lengths of 

10. The ground state potential is as shown in the legend. In the EX model, the excited state 

coupling, βes, is fixed at -30 kcal/mol. For the MM and HO models, the excited state potential is 

fixed at 6 kcal/mol. 
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Figure 6. Dependence on excited-state potential. The time constants (upper) and relative 

amplitude of the slow component (lower) are shown for the EX (left), MM (middle), and HO 

(right) models. The ground state potential is fixed at 0.6 kcal/mol for all three models, and the 

excited state potential is as shown in the legends. trot is 7.5 ps. The lines are smoothed curves, 

obtained by averaging with a window of 3. 

 



 20

 

Figure 7. Dependence on ground-state potential. Time constants (upper) and relative amplitude 

of the slow component (lower) are shown for the EX (left), MM (middle), and HO (right) 

models. The excited state potential is fixed at βes of -30 kcal/mol for the EX model and Ves = 6 

kcal/mol for the MM and HO models, with Vgs as shown in the legends. trot is 7.5ps. The lines are 

smoothed curves, obtained by averaging with a window of 3. 
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Figure 8. Dependence on rotational diffusion time of a single ring. Simulation parameters and 

plotting conventions are the same as Figure 6, with the exception that trot is 225 ps here (30 times 

the value used in Figure 6). The results indicate the time constants are roughly proportional to 

trot. 
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Table 1. Comparison of relaxation times as a function of integration time step, for an oligomer 

with 20 unit cells and with trot = 7.5 ps. For the MM model Vgs = 0 and Ves = 6 kcal/mol. For EX 

model Vgs = 0.6 kcal/mol and βes = -30 kcal/mol. Results from fits to single exponential (τ1-1) and 

a double exponential (τ2-1, τ2-2) forms are shown. 

Model Time 

Step 

 

1-1 

 

2-1 

 

2-2 

EX 0.02 0.5802 0.1766 1.2687 

0.10 0.5716 0.1791 1.2835 

MM 0.02 0.2676 0.1950 1.2402 

0.10 0.2667 0.1944 1.2177 
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