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A model is developed for the mobility of a charge carrier along a conjugated polymer 

dissolved in solution, as measured by time-resolved microwave conductivity. Each unit cell of 

the polymer is assigned a torsional degree of freedom, with Brownian dynamics used to include 

the effects of solvent on the torsions. The barrier to torsional motion is substantially enhanced in 

the vicinity of the charge, leading to self trapping of the charge onto a planarized region of the 

polymer chain. Within the adiabatic approximation used here, motion arises when regions of the 

polymer on either side of the charge fluctuate into planarity and the wavefunction spreads in the 

corresponding direction. Well-converged estimates for the mobility are obtained for model 

parameters where the adiabatic approximation holds. For the parameters expected for conjugated 

polymers, where crossing between electronic surfaces may lead to breakdown in the adiabatic 

approximation, estimates for the mobility are obtained via extrapolation. Nonadiabatic 

contributions from hopping between electronic surfaces are therefore ignored. The resulting 

mobility is inversely proportional to the rotational diffusion time, trot, of a single unit cell about 

the polymer axis in the absence of intramolecular forces. For trot of 75 ps, the long-chain mobility 
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of poly(para-phenylene vinylene) is estimated to be between 0.09 and 0.4 cm2/Vs. This is in 

reasonable agreement with experimental values for the polymer, however, the nonadiabatic 

contribution to the mobility is not considered, nor are effects arising from stretching degrees of 

freedom or breaks in conjugation.  

I. Introduction	

Conjugated polymers are a useful class of materials for constructing plastic electronic devices1. 

For many applications, such as field effect transistors, the charge mobility plays an important 

role in establishing device performance. The mobility of direct relevance to devices is that in thin 

films, which is likely strongly influenced by structural disorder and the need for charges to hop 

between polymer chains in order to move substantial distances. Nevertheless, the charge mobility 

along a single polymer chain is of fundamental interest, since it establishes the inherent 

conductivity of a conjugated polymer. The mobility on single polymer chains can be measured in 

solution through time-resolved microwave conductivity (TRMC)2. The computations presented 

here explore the factors that contribute to establishing this solution-phase mobility. 

Current theoretical models of solution-phase mobility use the time-dependent 

Schrödinger equation to propagate the charge along a polymer chain2–6. For poly(para-phenylene 

vinylene) (PPV), and microwaves with a frequency of 34 GHz, such models estimate the 

mobility to be about 60 cm2/Vs on a long chain. This is considerably larger than the experimental 

value of 0.46 cm2/Vs measured for PPV polymer. The lower value seen experimentally has been 

attributed to the limited length of well conjugated regions within the polymer. Simulations on 

oligomers and polymers with intentionally introduced defects find good agreement with 
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experiment, supporting the notion that limited chain lengths strongly influence the measured 

mobilities. 

By using the time dependent Schrödinger equation to propagate the wavefunction 

describing the charge, the existing models take as their starting point the coherent motion of the 

charge along the chain. Electronic dephasing is present in such models through a number of 

sources. One such source is structural disorder, which is included by averaging over an ensemble 

of structures whose torsional disorder reflects that expected for a Boltzmann distribution at the 

experimental temperature. Another source of dephasing is motion in the torsional degrees of 

freedom, which is included by allowing the torsional degrees of freedom to evolve under the 

influence of both intramolecular forces and solvent forces.  

Here, we use a quantum chemical model of the polymer that is equivalent to that used 

above2–6, but start from the opposite extreme of incoherent motion of the charge along the 

polymer. Within the adiabatic approximation considered here, the motion of the charge can be 

viewed as follows. Stiffening of the torsional potential in the vicinity of the charge leads to self-

trapping of the charge onto a planarized region of the polymer7,8. The mobility then reflects the 

motion of this planarized region along the chain. The model is sufficiently simple that 

trajectories may be run for long periods of time, giving well-converged estimates for the 

mobility.  

The use of the adiabatic approximation influences the mechanism through which the 

charge can move in the computations. The adiabatic approximation is valid when the gap 

between the ground and first-excited electronic state is sufficiently large. This is the case for 

model parameters that lead to strong self-trapping of the charge, i.e. low barrier to torsion on the 

uncharged polymer and strong stiffening in the vicinity of the charge. For such parameters, the 
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mobility arises from solvent fluctuations that cause the planarized region of the chain to drift. We 

refer to the contribution from this process as the adiabatic contribution to the mobility. As the 

parameters are adjusted towards the values expected for PPV, the adiabatic approximation begins 

to break down due to frequent crossing between electronic surfaces. Hopping between electronic 

surfaces at these crossings would serve to increase the mobility, and we refer to such increases as 

the non-adiabatic contribution to the mobility. The simulations performed here are limited to the 

adiabatic contribution. By extrapolating from parameters where the adiabatic approximation 

holds to the values expected for PPV, we can obtain estimates of the adiabatic contribution to the 

mobility of PPV. Since hopping between electronic surfaces likely increases the mobility, the 

adiabatic contribution obtained here correspond to a lower limit on the mobility. Estimates of the 

enhanced mobility due to surface hopping requires non-adiabatic simulations9–12, which are not 

carried out in the current work.  

Section II describes the quantum chemical model used for the charge, the Brownian 

dynamics used to include effects from the solvent, and the approach used to extract the mobility 

from the dynamics. Section III examines the predictions of the model, and Section IV discusses 

these in the context of experiment and past computational modeling.  

II. Methods	

II‐A. Quantum	Chemical	Model	

The polymer is modeled as a chain of N generalized sites (unit cells) of an oligomer, where each 

site represents one unit cell of the polymer and has a single torsional degree of freedom, i. The 

torsional potential in the ground state is modeled with a simple molecular mechanical form, 

written as: 
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where i  is the torsional angle of the ith ring, Vgs sets the magnitude of the torsional potential, 

and periodic boundary conditions are assumed. Eq. (1) is the lowest order trigonometric form 

that has a minimum for the planar structure and a maximum for all rings twisted to 90 degrees. 

The wavefunction and energy of the charge are obtained from the following matrix, 

which assumes coupling between sites that is proportional to the cosine of the angle between 

sites, 
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where  sets the magnitude of the coupling between sites, and periodic boundary conditions are 

assumed.  is the ionization potential of a single site, which has no impact on the model 

predictions discussed below and so is set to zero.  

The position, or center, of the charge is obtained using the following means to handle the 

periodic boundary conditions.  
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where ci is the amplitude of the eigenfunction of Eq. (2) on the ith site, and a is the length of a 

unit cell taken here as 6.6Å to correspond to PPV. Eq. (3) is obtained by assuming the polymer is 

wrapped into a circle with circumference Na. The angle corresponding to the position of the ith 
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site is then (2 /N) i. The numerator and denominator of the fraction in Eq. (3) are the average sin 

and cos of the angular position of the charge, and the sign of the inverse tangent is determined 

based on the quadrant corresponding to these averaged values. 

The quantum chemical model used above is equivalent to that used in previous work on 

the mobility of charges on isolated polymer chains. For PPV, quantum chemical calculations find 

 of about -20 kcal/mol, with twisting between the phenyl and vinylene groups having a barrier 

of about 4.6 kcal/mol5.  For polyfluorene, which does not have vinylene groups between 

conjugated rings, the barrier height is lower, being about 2.3 kcal/mol13. Since we are treating the 

entire unit cell of PPV as a site, we take a reduced value of Vgs = 2.5 kcal/mol for the torsional 

barrier and estimate = -25 kcal/mol. 

The charge is assumed to remain in the state corresponding to the lowest eigenvalue of 

Eq.  (2).  This adiabatic approximation is valid over a limited range of model parameters. As 

discussed in more detail below, the applicability of the adiabatic approximation is tested through 

computations that limit the number of sites included in the matrix diagonalization. The sites 

included in the diagonalization correspond to a window of size w centered around the charge. 

This is implemented in the Brownian dynamics by including, in the matrix diagonalization for 

each step of the dynamics, only sites that lie within (w-1)/2 unit cells of the center of charge, x of 

Eq. (3), obtained from the previous time step. The window thereby moves with and remains 

centered on the charge. Section III-A argues that, for cases where the adiabatic approximation 

holds, the calculated mobility saturates with increasing window size, w. Failure to converge with 

w is a signature of breakdown in the adiabatic approximation. All calculations of mobility are 

done on a chain with a total of 100 sites, using various window sizes. 
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II‐B. Brownian	Dynamics	

To model mobility in solution, we use Brownian dynamics to include solvent effects.  In 

Brownian dynamics, the solvent gives rise to both stochastic forces and friction, via 14 
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where θi and vi are the torsional angle and velocity, respectively, of the ith unit cell, and ai is the 

acceleration due to forces calculated as analytical derivatives of the torsional potentials described 

above, 
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Here I is the moment of inertia of a ring, taken as 91.1 amu·Å2. The friction coefficient, γ in Eq. 

(4), is the same for all sites, which assumes that the solvent effects are isotropic and independent 

of the system configuration. Finally, the random force term, Ai(t) of Eq.(4), is a stochastic 

Gaussian process given by: 
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The random force is related to the solvent friction by the fluctuation-dissipation theorem, 

such that the model contains only one parameter, γ, which defines the nature of the solvent. 

Rather than quote the value of γ below, we quote the rotational diffusion time, trot, of a single 

unit cell that arises from the solvent in the absence of any intramolecular forces. Note that this is 

the diffusion time for rotation of a unit cell about the polymer axis, as opposed to the rotational 

diffusion time of a free unit cell in solution. The relation between γ and trot is linear, as shown in 

Figure 1. Most of the results shown below are obtained with trot = 7.5 ps. The results scale with 

trot, allowing predictions to be easily made for other values. For polymers with side chains, trot 

has been estimated as lying between 30 and 200 ps2–5, and we will take trot = 75 ps as a 

representative value.  

 

Figure 1 Linear dependency of the rotational diffusion time of a single ring on the friction 
coefficient of Eq. (4). 
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The integration time step used for the Brownian dynamics is 48.8 fs when trot = 7.5 ps. 

This time step, 0.0064 trot, was chosen based on the results of Figure 2, which shows that 

decreasing the integration step by a factor of 2 and 5 does not alter the predictions. For other 

values of trot, we use a more conservative time step of 0.0032 trot, to ensure that dependence on 

trot is well described. 

 

Figure 2 Mobility as a function of window size obtained for various integration time steps (tstep is 
given as multiples of 48.8 fs). Results are for a chain with 100 sites, with Vgs= 0,  = -70 kcal/mol and 
trot = 7.5 ps.  
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II‐C. Calculation	of	Mobility	

The mobility is obtained from the random walk of the charge along the chain. The 

fluctuation-dissipation theorem allows us to relate mean square displacement of this random 

walk to mobility via6 
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where  is the mobility at frequency , T is temperature, kB is the Boltzmann constant, and e is 

the electron charge. 2 ( )x t  is the mean square displacement obtained from the trajectory, 
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Periodic boundary conditions are taken into account when evaluating    x t x   . If the 

random walk is a Markovian process, then the mean square displacement increases linearly in 

time such that  

 2 ( ) 2x t Dt  , (9) 

where D is the diffusion constant. Insertion of Eq. (9) into Eq. (7) gives 
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An estimate of the mobility can therefore be obtained via 

 
2 ( )

2


 
 
  B

x te

k T t
  (11) 

where 2 ( )x t  is obtained from the Brownian dynamics trajectories via Eq. (8).  Each Brownian 

dynamics trajectory is run for a total of 106 time steps, of which the first 5000 steps are an 



11 

 

equilibration phase that is not included in evaluation of Eq. (8). Between 7 and 15 independent 

trajectories are generated for each set of model parameters, and the results presented below show 

the mean of the values obtained from these trajectories, with error bars indicating the standard 

deviation of this mean. 

Note that Eq. (11) applies only for a Markovian process. The time scale beyond which 

the motion of the charge becomes Markovian is obtained by determining the time beyond which 

2 ( )x t  becomes proportional to t, or equivalently, the value of t beyond which the mobility 

Figure 3 Mobility as a function of the time used to determine the mean square displacement of the 
charge (Eq. (11)), for trot = 7.5 ps. The three lines shown for each set of parameters correspond to 
window sizes of 21, 31 and 41 (from bottom to top). The time beyond which the mobility stabilizes 
indicates the time scale beyond which the motion of the charge becomes Markovian.  and Vgs are 
given in kcal/mol.  
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estimated from Eq. (11) becomes independent of t (Figure 3). Results are shown for a range of 

values of Vgs and  over which the adiabatic approximation holds and for three different window 

sizes, w (see Section II-A). Figure 3 shows that the estimated mobility stabilizes beyond about 15 

ps, or 2 trot, for each set of parameters. This indicates that the motion of the charge corresponds 

to a Markovian process beyond about 2 trot. Equivalently, the motion of the charge is a random 

walk with uncorrelated jumps, provided a jump is defined as the change in the location of the 

charge arising for a time step of 2 trot or longer. In the remainder of the paper, the mobilities 

reported use t = 100 ps in Eq. (11) for trot = 7.5 ps, or more generally t = 13.3 trot.  

The effects of the deviation of 2 ( )x t  from being a linear function of t can be explored 

using the following functional form, 

  2 ( ) 2 1   M t
Mx t Dt c e  , (12) 

 where cM and M characterize the exponential decay seen in Figure 3. Inserting Eq. (12) into Eq. 

(7) gives 
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where 0   is the mobility at zero frequency. Figure 4 shows that the frequency dependence 

reduces the mobility below M, with a minimum value of (1-cM/8), and enhances the mobility 

above M , with a high frequency limit of 1+ cM. For the data of Figure 3, where trot = 7.5 ps, M  

is about 500 GHz and cM is about 1. Below, we show that trot establishes the time scale of the 

simulation, such that for trot = 75 ps, M  is about 50 GHz. Near the experimental frequency of 30 

GHz, we expect a small frequency dependence that reduces the mobility from the zero-frequency 

result by less than 15%. Defects that limit the effective conjugation length may also contribute to 

the frequency dependence4. 

 

Figure 4 Frequency dependence of the mobility, from Eq. (13), with minimum shown as a red dot. 
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III. Results	

III‐A. Range	of	validity	of	the	adiabatic	approximation	

In the Brownian dynamics simulations, the lowest-energy eigenstate of the matrix in Eq. 

(2) is used to calculate the position of the charge, x of Eq.(3), and the forces associated with the 

torsional angles in Eq. (5). This is valid provided the energy gap to the next highest energy state 

is sufficiently large. The impact of breakdown in the adiabatic approximation can be understood 

Figure 5 Energy distribution of a charge on a chain with 20 sites (solid lines), and distribution of 
energy required to create a charge on an initially uncharged chain with 20 sites (dotted lines). 
Substantial overlap of these distributions leads to breakdown in the adiabatic approximation. Vgs = 
0,  trot = 7.5 ps, and  is in kcal/mol. 
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by consider a simulation involving two uncoupled chains, only one of which is charged. Given 

the absence of coupling between the chains, any hop of the charge between chains is a clear 

artifact of breakdown in the adiabatic approximation. Since the adiabatic approximation selects 

electronic states based only on their energy, such hops will occur whenever the fluctuations are 

such that the charge could lower its energy by hopping from the currently charged chain to the 

currently uncharged chain. Figure 5 shows the energy distributions relevant to determining the 

likelihood of such fluctuations. The solid lines show the energy distribution corresponding to the 

charged chain. The dotted lines show the energy associated with creating a charge on the 

uncharged chain. When there is substantial overlap between these two energy distributions, 

fluctuations will often lead to situations where the charge can lower its energy by jumping 

between chains. In adiabatic dynamics, such jumps are allowed despite the lack of coupling 

between chains. This gives insight into the artifacts that may arise in adiabatic dynamics on long 

chains. The lower average energy and smaller fluctuations obtained on the charged chain reflects 

self-trapping of the charge onto a planarized region of the chain. When this energy distribution 

has substantial overlap with the distribution of energies required to create a charge on an 

uncharged chain, adiabatic dynamics will lead to frequent jumps from the planarized region 

associated with the self-trapped charge to remote regions of the chain that have spontaneously 

fluctuated into a more planar configuration.  
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To monitor the occurrence of such artifactual, long-range, jumps, we examine the 

computed mobility as a function of the window size, w, within which we diagonalize the matrix 

of Eq. (2). For Vgs = 0 and = -200 kcal/mol, where there is little overlap of the energy 

distributions in Figure 5, the mobility increases with w and saturates by about 21 sites (Figure 6). 

The initial increase with window size reflects the size of the self-localized charge. For w beyond 

about 21 sites, increasing the window size has little effect on the mobility because the 

wavefunction of the charge remains localized to less than this number of sites. (Recall that, at 

each integration step, the center of the window is adjusted to the center of the charge from the 

previous step. The window therefore follows the motion of the charge.) For cases where the 

mobility saturates with w, the charge moves because sites on either side of the charge fluctuate 

into planarity and the wavefunction spreads in that direction. We will refer to this mechanism as 

 

Figure 6 Mobility as a function of window size for Vgs = 0 (left panels) and Vgs = 0.3 kcal/mol (right 
panels). The lower panels are detailed views of the data in the upper panels. Units for  are 
kcal/mol, and trot = 7.5 ps. 
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adiabatic motion of the charge, and the resulting mobility as the adiabatic contribution to the 

mobility. 

When the magnitude of  is lowered to -30 kcal/mol, there is substantial overlap 

between the energy distributions in Figure 5. For these parameters, the mobility rises rapidly 

with window size, w. This indicates that the charge is hopping rapidly between electronic 

surfaces and non-adiabatic dynamics would be required to obtain a reliable estimate of the 

mobility. For the intermediate value of  = -70 kcal/mol, we see a plateau between about w = 21 

and w = 41 sites. We can rationalize this as follows. The initial rise to the plateau reflects the size 

of the localized charge. Within the plateau region, the portion of the chain that is within the 

window, but unoccupied by the charge, is not sufficient to support a lower-energy location for 

the charge. Beyond the plateau, remote lower-energy locations begin to appear within the 

window and the adiabatic approximation leads to artifactual jumps to these remote regions. Such 

jumps may indeed occur and contribute to the mobility, however, the adiabatic algorithm 

overestimates the occurrence of such jumps and so does not provide a reliable estimate of their 

contribution to the mobility. We will refer to the contribution of such jumps as the non-adiabatic 

contribution to the mobility. The value of the mobility on the plateau is taken as an estimate of 

the adiabatic contribution to the mobility, which provides a lower-limit to the actual mobility.  

The adiabatic approximation holds for parameters corresponding to strong self-trapping 

of the charge. The degree of self-trapping increases with ||. The degree of self-trapping 

decreases as Vgs is increased, such that for Vgs = 0.3 kcal/mol, a larger magnitude of  is required 

for the adiabatic approximation to hold (right panels of Figure 6).  
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III‐B. Dependence	of	mobility	on	model	parameters	

For parameters over which the adiabatic approximation holds, the dependence of the mobility on 

model parameters can be obtained. Given this dependence, we may then extrapolate to values of 

the parameters for which the adiabatic approximation breaks down. This extrapolation can be 

used to estimate the adiabatic contribution to the mobility. As discussed above, the applicability 

of the adiabatic approximation is related to the existence of a plateau in the plot of mobility 

versus window size. Figure 7 shows a plot of mobility versus , obtained with window sizes of 

21, 31 and 41. For Vgs = 0, the results obtained for windows of 21, 31 and 41 agree well for | | 

greater than about 80 kcal/mol, in agreement with the values of | | for which a plateau is seen in 

Figure 6. For Vgs = 0.3, comparison of windows 21, 31 and 41 indicate a plateau for | | greater 

 

Figure 7 Extrapolation of mobility to lower magnitude values of . Comparison of window sizes 
21, 31, and 41 is used to evaluate the existence of a plateau in the dependence of mobility on 
window size (Figure 6), and thus the ability to estimate the adiabatic contribution to the mobility. 
Units for Vgs are kcal/mol, and trot = 7.5 ps. 
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than about 100 kcal/mol, also in agreement with Figure 6. For both of these values of Vgs, the 

dependence on is relatively weak. For Vgs = 0, a rough extrapolation to the expected PPV value 

of about  = -25 kcal/mol (Section II-A) gives a mobility of 0.17 cm2/Vs. For Vgs = 0.3 kcal/mol, 

the extrapolation depends on whether one attributes the steeper rise below | | of 100 kcal/mol to 

an actual dependence on or to breakdown in the adiabatic approximation (as indicated by the 

increasing dependence of the results on window size).  Due to this uncertainty, extrapolation of 

the mobility to  = -25 kcal/mol gives a range of values, 0.2 to 0.3 cm2/Vs.  Below, extrapolation 

from  = -150 kcal/mol to  = -25 kcal/mol will be taken as increasing the mobility by a factor of 

between 1.5 and 2.  
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Figure 8 shows the predicted mobility as a function of Vgs from 0 to 1 kcal/mol. For  = -

100 kcal/mol, the adiabatic approximation begins to breakdown beyond about Vgs = 0.8 kcal/mol, 

as indicated by large deviations between the values obtained for different window sizes. For  = 

-150 kcal/mol, the adiabatic approximation holds up to about Vgs = 1 kcal/mol. Rough 

extrapolation of the  = -150 kcal/mol results from Vgs = 1 kcal/mol to the PPV value of Vgs = 2.5 

kcal/mol (Section II-A), gives a predicted mobility of between 0.75 and 2 cm2/Vs, corresponding 

to increase by a factor of between 2 and 7. 

To extrapolate across both Vgs and , we begin with the mobility of 0.3 cm2/Vs obtained 

Figure 8 Extrapolation of mobility to larger values of Vgs, in a manner similar to that of Figure 7. 
Units for  are kcal/mol, and trot = 7.5 ps. 
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for Vgs  = 1 kcal/mol and  = -150 kcal/mol, where the good agreement between w=31 and 41 in 

Figure 8 indicates a good plateau region and therefore a reliable estimate of the adiabatic 

contribution to the mobility. Extrapolation from  = -150 kcal/mol to  = -25 kcal/mol increases 

the mobility by a factor of between 1.5 and 2.  Extrapolation from Vgs = 1 to 2.5 kcal/mol 

increases the mobility by a factor of between about 2 and 7. Combining these gives a factor of 3 

to 14, or an extrapolated mobility between about 0.9 and 4 cm2/Vs for trot = 7.5ps, with most of 

the uncertainty coming from the extrapolation in Vgs.  

Figure 9 Dependence of the mobility on the rotational diffusion time of an isolated ring of the 
polymer, trot.  Units for  and Vgs are kcal/mol. 
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Finally, we consider the dependence on trot. Figure 9 shows that the mobility is 

proportional to 1/trot. Taking trot =75 ps reduces the above estimate for the mobility of PPV by 

one order of magnitude, or 0.09 to 0.4 cm2/Vs. 

IV. Discussion	

The computational approach used here is able to obtain well-converged results for the mobility 

within the adiabatic approximation. This approximation holds for parameters corresponding to 

strong self trapping of the excitation onto a planarized region of the polymer, i.e. low torsional 

barriers in the ground electronic state, Vgs, and strong coupling of charge between sites, . In this 

limit, the mobility is most sensitive to the nature of the solvent-solute interactions, as captured by 

trot, the rotational diffusion time of a single aromatic ring of the polymer in the absence of 

intramolecular forces. trot sets the time scale for the dynamics, such that the mobility is inversely 

proportional to trot. Taking trot =75 ps yields a mobility of 0.03 cm2/Vs for Vgs  = 1 kcal/mol and  

= -150 kcal/mol, parameters for which the adiabatic approximation holds. Examination of the 

dependence of the mobility on  suggests that extrapolation to -25 kcal/mol, the value expected 

for PPV, increases the mobility by a factor of between 1.5 and 2. For Vgs, extrapolation to the 2.5 

kcal/mol value expected for PPV increases the mobility by a factor of between 2 and 7. The 

combined extrapolation therefore gives an estimated range of 0.09 to 0.4 cm2/Vs for the mobility 

of PPV. The strong dependence on trot and Vgs is consistent with a physical picture for motion of 

the planarized region holding the charge, in which the charge moves because sites on either side 

of the current location fluctuate into planarity and the wavefunction spreads in the corresponding 

direction.  
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The mobility extracted from TRMC experiments on PPV is 0.46 cm2/Vs at 34 GHz, in 

reasonable agreement with the range predicted here. However, direct comparison with 

experiment is complicated by a number of factors. First is the use of the adiabatic approximation 

in the above computations. For the parameters appropriate for PPV, there are frequent crossings 

of electronic surfaces and hopping between these surfaces would serve to increase the mobility. 

The extrapolations performed here attempt to isolate the adiabatic contribution to the mobility by 

assuming that the dependence on parameters in Figure 7 and Figure 8 holds beyond the range 

where the computations were performed. No attempt is made here to estimate the non-adiabatic 

contribution to the mobility. 

The second factor that complicates comparison with experiments is the assumption of an 

unlimited chain length. Past computations obtain substantially higher estimates for the mobility 

of a long chain, 60 cm2/Vs, and attribute the reduced value seen experimentally to the limited 

length of well-conjugated segments in the polymer2,4. Here, the predicted long-chain mobility is 

much smaller, about 0.2 cm2/Vs. Using t = 30 ps in Eq. (11), corresponding to the period of a 34 

GHz microwave, gives 2 ( )x t   of about 8 unit cells for  = 0.2 cm2/Vs and 140 unit cells for  

= 60 cm2/Vs. This suggests that, for the low long-chain mobility predicted here, defects that serve 

to shorten the effective chain length of the polymer may not have a major impact on the 

measured mobility.  

The means through which the charge moves in the model considered here is somewhat 

different than that of past computations and this leads to differences regarding the predicted 

dependence on model parameters. Here, the mobility is strongly influenced by trot, since the 

charge moves when sites on either side of the current location of the charge fluctuate into 

planarity with the charged region. The fluctuations induced by the solvent are then the primary 
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driving force for charge motion. In wavepacket propagation, the role of rotational diffusion is to 

enhance mobility by removing twists near 90o that restrict charge motion5. This leads to a weaker 

dependence on trot, such that changing trot from 10 to 100 ps changes the mobility by less than a 

factor of 45, as opposed to the factor of 10 predicted here based on the inverse relationship 

between  and trot. The dependence on the charge coupling, , is also quite different in the two 

models. In wavepacket propagation, the mobility is directly proportional to the magnitude of , 

as expected for band-like transport. In Figure 7, the dependence is much weaker and in the 

opposite direction. 

The large disagreement between the mobility predicted here and that obtained from 

wavepacket propagation may arise from a number of factors. One factor is the large difference in 

time scales of the two computational approaches. In the wavepacket propagation methods, trot is 

taken as about 60 ps and a few hundred simulations are run, each with a length of about 25 ps3,5. 

The resulting 2 ( )x t  is found to rise rapidly for about 1 ps and then enter a diffusive region 

where the motion is influenced by disorder in the torsional angles. For the simulations performed 

here, the time scales are considerably longer. With trot  = 75 ps, the equilibration time for the 

trajectory is 2.5 ns and the total length is 500 ns. Between 7 and 15 such trajectories are needed 

to obtain estimates for the mobility that have the error bars shown throughout the above Figures. 

In other work15, we have examined the time needed for the charge to equilibrate on the chain, 

and found that relaxation of an initially created charge has two time components, 0.15 trot and 

0.025 trot, corresponding to 2 ps and 12 ps for trot = 75 ps. Given the 12 ps time component 

involved in the self trapping, and the long trajectories needed here to obtain converged estimates 

for the mobility, it seems likely that the two simulation approaches are examining different 

phenomena. Here, we equilibrate the system for 2.5 ns, and then examine the motion of the self-
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trapped charge. In the wavefunction propagation approach, the simulation time is just beyond 

that needed for the charge to self-trap and much less than would be needed to obtain converged 

statistics for the motion of the self-trapped charge. On the other hand, the simulations performed 

here employ the adiabatic approximation and so may exclude effects that are contained in the 

wavefunction propagation approach. 

Finally, we note that in addition to torsional degrees of freedom, stretching degrees of 

freedom contribute to self-trapping of the charge7,8. As the barrier to torsions, Vgs, is increased, 

the degree of localization due to torsions will decrease such that inclusion of stretching degrees 

of freedom becomes essential. In particular, the current model is inapplicable to ladder polymers, 

where the torsions are nearly frozen. 

In summary, this paper considers a model for the mobility of conjugated polymers in 

solution that includes self-trapping of the charge, due to torsional degrees of freedom, and 

fluctuations due to interactions with the solvent. The results provide reliable estimates of the 

mobility for parameters where the adiabatic approximation holds. Extrapolation to parameters 

appropriate for polymers gives mobilities that are in reasonable agreement with experiment. This 

agreement may indicate that the mobility in polymers is primarily established by the adiabatic 

motion modeled here. However, the contribution of nonadiabatic effects to the mobility remain 

to be considered, as are the influence of factors such as self-trapping due to stretching degrees of 

freedom and the limited chain length present in actual polymers.  

Inclusion of non-adiabatic effects is needed to better understand the factors that establish 

the mobility. Since the degree to which the adiabatic approximation breaks down may be 

controlled by varying the parameters, this model may provide a useful system in which to 

develop and test approaches to nonadiabatic dynamics. 



26 

 

 

ACKNOWLEDGMENT 

Work supported in part by the National Science Foundation (Grants 0719350 and 1027985). The 

authors thank Xiaochen Cai for early contributions to this work. 

 

 

  



27 

 

 

1 T.A. Skotheim and J. Reynolds, editors, Conjugated Polymers: Theory, Synthesis, Properties, 

and Characterization (Handbook of Conducting Polymers, Third Edition) (CRC Press, 2006). 

2 F.C. Grozema and L.D.A. Siebbeles, Journal of Physical Chemistry Letters 2, 2951 (2011). 

3 P. Prins, F.C. Grozema, and L.D.A. Siebbeles, The Journal of Physical Chemistry. B 110, 

14659 (2006). 

4 P. Prins, F.C. Grozema, J.M. Schins, and L.D.A. Siebbeles, Physica Status Solidi (b) 243, 382 

(2006). 

5 P. Prins, F.C. Grozema, and L.D.A. Siebbeles, Molecular Simulation 32, 695 (2006). 

6 F.C. Grozema, P.T. van Duijnen, Y.A. Berlin, M.A. Ratner, and L.D.A. Siebbeles, The Journal 

of Physical Chemistry B 106, 7791 (2002). 

7 M. Hultell and S. Stafstroem, Physical Review B: Condensed Matter and Materials Physics 75, 

104304/1 (2007). 

8 M. Hultell and S. Stafström, Physical Review B 79, 014302 (2009). 

9 J.C. Tully, The Journal of Chemical Physics 137, 22A301 (2012). 

10 T. Nelson, S. Fernandez-Alberti, V. Chernyak, A.E. Roitberg, and S. Tretiak, The Journal of 

Chemical Physics 136, 054108 (2012). 



28 

 

11 H. Tamura, E.R. Bittner, and I. Burghardt, The Journal of Chemical Physics 127, 034706 

(2007). 

12 W. Barford, I. Boczarow, and T. Wharram, The Journal of Physical Chemistry. A 115, 9111 

(2011). 

13 H.L. Chen, Y.F. Huang, T.S. Lim, C.H. Su, P.H. Chen, A.C. Su, K.T. Wong, T.C. Chao, S.I. 

Chan, and W. Fann, Journal of Physical Chemistry B 113, 8527 (2009). 

14 M.P. Allen, Molecular Physics 40, 1073 (1980). 

15 N.M. Albu and D.J. Yaron, J. Phys. Chem. C (submitted) (2013).  

 




