# **Lecture Notes Z: Solubility III**

# 1) pH effects on solubility

# **Tooth Decay**

The enamel covering of your teeth contains the mineral hydroxyapatite,  $Ca_{10}(PO_4)_6(OH)_2$ , which dissolves in water to give:

$$Ca_{10}(PO_4)_6(OH)_{2 (s)} \leftarrow \rightarrow 10 Ca^{+2} + 6 PO_4^{-3} + 2 OH^{-1}$$

# Concept

Is hydroxyapatite more soluble in:

- a) acidic solution
- b) neutral water
- c) basic solution



# 2) Complex ion formation

# Ligands binding to metals

Research of Jonathan S. Lindsey (http://www2.ncsu.edu/ncsu/chemistry/jsl.html)

A Molecular Photonic Wire

#### Problem

A solution is made that is 0.10M in  $ZnCl_2$  and 1.0M in  $NH_3$ . What is the concentration of  $Zn^{+2}$ ,  $Zn(NH_3)_4^{+2}$  and  $Zn(NH_3)_3^{+2}$  in the solution.

$$Zn^{+2} + 4NH_3 \leftarrow \rightarrow Zn (NH_3)_4^{+2} K_f = 4.9x10^8$$

Init:

Start:

Eq:

Assume

$$K_4 = 90 = [Zn (NH_3)_4^{+2}] = [Zn(NH_3)_3^{+2}][NH_3]$$

#### Black and white photography

The film is prepared by making an emulsion of silver halides (AgBr) in gelatin. When exposed to light, photochemical reactions convert the silver halide to a photosensitized form:

When exposed to hydroquinone developer, the photosensitized AgBr is reduced to metallic silver.

This development process is stopped with a "stopper" solution KBr, which is first put on the film and then washed off with water.

A fixer solution of sodium thiosulfate ( $Na_2S_2O_3$ ), also called hypo, is then used to remove the unexposed AgBr. The  $S_2O_3^-$  complexes with the silver, and makes the KBr soluble.

fixer: 
$$Ag^{+}(aq) + 2 S_2 O_3^{-2}(aq) \longleftrightarrow Ag(S_2 O_3)_2^{-3}(aq)$$
 K=1.7x10<sup>13</sup>

The fixer also contains an acid that hardens the gelatin. The hypo is then washed off, otherwise it turns the films yellow by forming sodium sulfate (Na<sub>2</sub>SO<sub>4</sub>).

So the part of the film that was exposed to light now contains Ag metal. This gives a negative image. You must now repeat the process, to form a positive image on paper.



Compare the solubility of AgBr in water with that in a 0.2M solution of  $Na_2S_2O_3$ .  $(K_{sp} (AgBr) = 7.7x10^{-13})$ .