Lecture Notes U: Acid-Base Chemistry VIII

1) Polyprotic acids

$\begin{array}{l} H_2SO_4 + H_2O \\ HSO_4^- + H_2O \end{array}$		$K_{a1} = 1000$ $K_{a2} = 1.2 \times 10^{-2}$	$pK_{a1} = -2$ $pK_{a2} = 1.92$
$\begin{array}{l} H_2SO_3 \ + H_2O \\ HSO_3^- \ + H_2O \end{array}$	$ \begin{array}{l} \overleftarrow{\leftarrow} \rightarrow \mathrm{H_{3}O^{+} + \mathrm{HSO_{3}^{-}}} \\ \overleftarrow{\leftarrow} \rightarrow \mathrm{H_{3}O^{+} + \mathrm{SO_{3}^{=}}} \end{array} $	$\begin{array}{l} K_{a1} = 1.54 \text{ x } 10^{-2} \\ K_{a2} = 1.02 \text{ x } 10^{-7} \end{array}$	$pK_{a1} = 1.81$ $pK_{a2} = 6.91$
$\begin{array}{l} H_2S \ + H_2O \\ HS^- \ + H_2O \end{array}$	$ \begin{array}{l} \overleftarrow{\leftarrow} \rightarrow \mathrm{H_3O^+} + \mathrm{HS^-} \\ \overleftarrow{\leftarrow} \rightarrow \mathrm{H_3O^+} + \mathrm{S^=} \end{array} $	$K_{a1} = 9.1 \text{ x } 10^{-8}$ $K_{a2} = 1.1 \text{ x } 10^{-12}$	$pK_{a1} = 7.04$ $pK_{a2} = 11.9$
$\begin{array}{l} H_2CO_3 \ + H_2O \\ HCO_3^- \ + H_2O \end{array}$	$ \begin{array}{l} \overleftarrow{\leftarrow} \rightarrow \mathrm{H}_{3}\mathrm{O}^{+} + \mathrm{HCO}_{3}^{-} \\ \overleftarrow{\leftarrow} \rightarrow \mathrm{H}_{3}\mathrm{O}^{+} + \mathrm{CO}_{3}^{=} \end{array} $	$K_{a1} = 4.3 \text{ x } 10^{-7}$ $K_{a2} = 4.8 \text{ x } 10^{-11}$	$pK_{a1} = 6.37$ $pK_{a2} = 10.32$
$H_{3}PO_{4} + H_{2}O$ $H_{2}PO_{4}^{-} + H_{2}O$ $HPO_{4}^{-2} + H_{2}O$	$ \begin{array}{l} \overleftarrow{\leftarrow} \rightarrow H_3O^+ + H_2PO_4^- \\ \overleftarrow{\leftarrow} \rightarrow H_3O^+ + HPO_4^{-2} \\ \overleftarrow{\leftarrow} \rightarrow H_3O^+ + PO_4^{-3} \end{array} $	$\begin{array}{l} K_{a1} = 7.52 \times 10^{-3} \\ K_{a2} = 6.23 \times 10^{-8} \\ K_{a3} = 2.2 \times 10^{-13} \end{array}$	$pK_{a1} = 2.12$ $pK_{a2} = 7.21$ $pK_{a1} = 12.67$

2) Titration of a polyprotic acid

The following shows the result of titrating 50ml of 1M $\rm H_2SO_3$ with 1M NaOH. The relevant reactions are:

$$H_2SO_3 + OH^- \leftrightarrow H_2O + HSO_3^- K = 1/K_{b1} = K_{a1}/K_w = 1.5 \times 10^{12}$$

$$HSO_3^- + OH^- \quad \iff H_2O + SO_3^- \quad K = 1/K_{b2} = K_{a2}/K_w = 1.0 \times 10^7$$

 $H_2SO_3 + OH^-$ ←→ $H_2O + HSO_3^-$ K=1/K_{b1}=K_{a1}/K_w= 1.5x10¹² $HSO_3^- + OH^-$ ←→ $H_2O + SO_3^-$ K=1/K_{b2}=K_{a2}/K_w= 1.0x10⁷

The following shows the result of titrating 50ml of a weak acid solution with 1M NaOH.

What is the pK_{a1} and pK_{a2} of this acid?

What is the concentration of this acid?

3) Buffers made with polyprotic acids

What is the pH of a solution formed by mixing 50ml of 1.0M H₂SO₃ with 50ml of 1.0M NaHSO₃?

 $H_2SO_3 + H_2O \iff H_3O^+ + HSO_3^- K_{a1} = 1.54 \times 10^{-2} pK_{a1} = 1.81$

In the above buffer solution, what is the concentration of $SO_3^=$?

What is the pH of a solution formed by mixing 50ml of 1.0M NaHSO₃ with 50ml of 1.0M Na₂SO₃?

 $HSO_3^- + H_2O \iff H_3O^+ + SO_3^- K_{a2} = 1.02 \times 10^{-7} pK_{a2} = 6.91$

In the above buffer solution, what is the concentration of H_2SO_3 ?

Concept

Which	of the following would g	ive me a bu	ffer with pH=7.2?
a)	50ml of 1M H ₃ PO ₄	and	50ml of 1M NaH ₂ PO ₄

b)	50ml of 1M NaH ₂ PO ₄	and	50ml of 1M NaOH
c)	50ml of 1M NaH ₂ PO ₄	and	25ml of 1M NaOH
d)	25ml of 1M NaH ₂ PO ₄	and	50ml of 1M NaOH

Concept

You have a sample of water containing phosphoric acid. The pH of the sample is 12.3. Which protonation states of phosphoric acid are present in significant amounts?

 H_3PO_4 $H_2PO_4^ HPO_4^ PO_4^{-3}$

4) pH of solutions containing multi-protic weak acids?

$CO_2(g)$	\leftrightarrow	$CO_{2(aq)}$	K = 0.034	
$CO_{2(aq)} + 2H_2O$	\leftrightarrow	$H_3O^+ + HCO_3^-$	$K_{a1} = 4.3 \times 10^{-7}$	
$HCO_3 + H_2O$	\leftrightarrow	$H_{3}O^{+} + CO_{3}^{=}$	$K_{a2} = 4.8 \times 10^{-11}$	$pK_{a2} = 10.32$

The partial pressure of CO_2 in the atmosphere is 3.55×10^{-4} atm. What is the pH of water in equilibrium with air?

Suppose a can of soda contains a gas mixture for which the partial pressure of CO₂ is 1 atm. What is the pH of the soda?

5) General solution of aqueous equilibria

What is the pH of 1.0x10⁻⁵M HCN?