Lecture Notes U: Acid-Base Chemistry VIII

1) Polyprotic acids

$\begin{aligned} & \mathrm{H}_{2} \mathrm{SO}_{4}+\mathrm{H}_{2} \mathrm{O} \\ & \mathrm{HSO}_{4}^{-}+\mathrm{H}_{2} \mathrm{O} \end{aligned}$	$\begin{aligned} & \stackrel{\mathrm{l}}{\mathrm{H}} \mathrm{O}^{+}+\mathrm{HSO}_{4}^{-} \\ & \leftarrow \rightarrow \mathrm{H}_{3} \mathrm{O}^{+}+\mathrm{SO}_{4}^{-} \end{aligned}$	$\begin{aligned} & \mathrm{K}_{\mathrm{a} 1}=1000 \\ & \mathrm{~K}_{\mathrm{a} 2}=1.2 \times 10^{-2} \end{aligned}$	$\begin{aligned} & \mathrm{pK}_{\mathrm{a} 1}=-2 \\ & \mathrm{pK}_{\mathrm{a} 2}=1.92 \end{aligned}$
$\mathrm{H}_{2} \mathrm{SO}_{3}+\mathrm{H}_{2} \mathrm{O}$	$\leftarrow \mathrm{H}_{3} \mathrm{O}^{+}+\mathrm{HSO}_{3}^{-}$	$\mathrm{K}_{\mathrm{a} 1}=1.54 \times 10^{-2}$	$\mathrm{pK}_{\mathrm{a} 1}=1.81$
$\mathrm{HSO}_{3}{ }^{-}+\mathrm{H}_{2} \mathrm{O}$	$\leftarrow \mathrm{H}_{3} \mathrm{O}^{+}+\mathrm{SO}_{3}{ }^{=}$	$\mathrm{K}_{\mathrm{a} 2}=1.02 \times 10^{-7}$	$\mathrm{pK}_{\mathrm{a} 2}=6.91$
$\mathrm{H}_{2} \mathrm{~S}+\mathrm{H}_{2} \mathrm{O}$	$\leftrightarrow \mathrm{H}_{3} \mathrm{O}^{+}+\mathrm{HS}^{-}$	$\mathrm{K}_{\mathrm{a} 1}=9.1 \times 10^{-8}$	$\mathrm{pK}_{\mathrm{a} 1}=7.04$
$\mathrm{HS}^{-}+\mathrm{H}_{2} \mathrm{O}$	$\leftrightarrow \mathrm{H}_{3} \mathrm{O}^{+}+\mathrm{S}^{-}$	$\mathrm{K}_{\mathrm{a} 2}=1.1 \times 10^{-12}$	$\mathrm{pK}_{\mathrm{a} 2}=11.9$
$\mathrm{H}_{2} \mathrm{CO}_{3}+\mathrm{H}_{2} \mathrm{O}$	$\longleftrightarrow \mathrm{H}_{3} \mathrm{O}^{+}+\mathrm{HCO}_{3}^{-}$	$\mathrm{K}_{\mathrm{a} 1}=4.3 \times 10^{-7}$	$\mathrm{pK}_{\mathrm{a} 1}=6.37$
$\mathrm{HCO}_{3}{ }^{-}+\mathrm{H}_{2} \mathrm{O}$	$\leftarrow \mathrm{H}_{3} \mathrm{O}^{+}+\mathrm{CO}_{3}{ }^{=}$	$\mathrm{K}_{\mathrm{a} 2}=4.8 \times 10^{-11}$	$\mathrm{pK}_{\mathrm{a} 2}=10.32$
$\mathrm{H}_{3} \mathrm{PO}_{4}+\mathrm{H}_{2} \mathrm{O}$	$\leftrightarrow \mathrm{H}_{3} \mathrm{O}^{+}+\mathrm{H}_{2} \mathrm{PO}_{4}^{-}$	$\mathrm{K}_{\mathrm{a} 1}=7.52 \times 10^{-3}$	$\mathrm{pK}_{\mathrm{a} 1}=2.12$
$\mathrm{H}_{2} \mathrm{PO}_{4}^{-}+\mathrm{H}_{2} \mathrm{O}$	$\leftrightarrow \mathrm{H}_{3} \mathrm{O}^{+}+\mathrm{HPO}_{4}^{-2}$	$\mathrm{K}_{\mathrm{a} 2}=6.23 \times 10^{-8}$	$\mathrm{pK}_{\mathrm{a} 2}=7.21$
$\mathrm{HPO}_{4}{ }^{-2}+\mathrm{H}_{2} \mathrm{O}$	$\leftarrow \mathrm{H}_{3} \mathrm{O}^{+}+\mathrm{PO}_{4}^{-3}$	$\mathrm{K}_{\mathrm{a} 3}=2.2 \times 10^{-13}$	$\mathrm{pK}_{\mathrm{a} 1}=12.67$

2) Titration of a polyprotic acid

The following shows the result of titrating 50 ml of $1 \mathrm{M} \mathrm{H}_{2} \mathrm{SO}_{3}$ with 1 M NaOH . The relevant reactions are:

$$
\mathrm{H}_{2} \mathrm{SO}_{3}+\mathrm{OH}^{-} \quad \longleftrightarrow \mathrm{H}_{2} \mathrm{O}+\mathrm{HSO}_{3}^{-} \quad \mathrm{K}=1 / \mathrm{K}_{\mathrm{b} 1}=\mathrm{K}_{\mathrm{a} 1} / \mathrm{K}_{\mathrm{w}}=1.5 \times 10^{12}
$$

$$
\mathrm{HSO}_{3}^{-}+\mathrm{OH}^{-} \quad \leftarrow \mathrm{H}_{2} \mathrm{O}+\mathrm{SO}_{3}^{=} \quad \mathrm{K}=1 / \mathrm{K}_{\mathrm{b} 2}=\mathrm{K}_{\mathrm{a} 2} / \mathrm{K}_{\mathrm{w}}=1.0 \times 10^{7}
$$

$$
\begin{array}{lll}
\mathrm{H}_{2} \mathrm{SO}_{3}+\mathrm{OH}^{-} & \leftrightarrow \mathrm{H}_{2} \mathrm{O}+\mathrm{HSO}_{3}^{-} & \mathrm{K}=1 / \mathrm{K}_{\mathrm{b} 1}=\mathrm{K}_{\mathrm{a} 1} / \mathrm{K}_{\mathrm{w}}=1.5 \times 10^{12} \\
\mathrm{HSO}_{3}^{-}+\mathrm{OH}^{-} & \leftrightarrow \mathrm{H}_{2} \mathrm{O}+\mathrm{SO}_{3}{ }^{=} & \mathrm{K}=1 / \mathrm{K}_{\mathrm{b} 2}=\mathrm{K}_{\mathrm{a} 2} / \mathrm{K}_{\mathrm{w}}=1.0 \times 10^{7}
\end{array}
$$

The following shows the result of titrating 50 ml of a weak acid solution with 1 M NaOH .

What is the $\mathrm{pK}_{\mathrm{a} 1}$ and $\mathrm{pK}_{\mathrm{a} 2}$ of this acid?

What is the concentration of this acid?

3) Buffers made with polyprotic acids

What is the pH of a solution formed by mixing 50 ml of $1.0 \mathrm{M} \mathrm{H}_{2} \mathrm{SO}_{3}$ with 50 ml of 1.0 M NaHSO 3 ?

$$
\mathrm{H}_{2} \mathrm{SO}_{3}+\quad \mathrm{H}_{2} \mathrm{O} \quad \leftarrow \quad \mathrm{H}_{3} \mathrm{O}^{+}+\quad \mathrm{HSO}_{3}^{-} \quad \mathrm{K}_{\mathrm{a} 1}=1.54 \times 10^{-2} \quad \mathrm{pK}_{\mathrm{a} 1}=1.81
$$

In the above buffer solution, what is the concentration of $\mathrm{SO}_{3}{ }^{=}$?

What is the pH of a solution formed by mixing 50 ml of $1.0 \mathrm{M} \mathrm{NaHSO}_{3}$ with 50 ml of $1.0 \mathrm{M} \mathrm{Na}_{2} \mathrm{SO}_{3}$?
$\mathrm{HSO}_{3}{ }^{-}+$
$\mathrm{H}_{2} \mathrm{O}$
$\leftarrow \rightarrow$
$\mathrm{H}_{3} \mathrm{O}^{+}+$
$\mathrm{SO}_{3}{ }^{=}$
$\mathrm{K}_{\mathrm{a} 2}=1.02 \times 10^{-7} \quad \mathrm{pK}_{\mathrm{a} 2}=6.91$

In the above buffer solution, what is the concentration of $\mathrm{H}_{2} \mathrm{SO}_{3}$?

Concept

Which of the following would give me a buffer with $\mathrm{pH}=7.2$?
a) $\quad 50 \mathrm{ml}$ of $1 \mathrm{M} \mathrm{H}_{3} \mathrm{PO}_{4} \quad$ and $\quad 50 \mathrm{ml}$ of $1 \mathrm{M} \mathrm{NaH}{ }_{2} \mathrm{PO}_{4}$
b) $\quad 50 \mathrm{ml}$ of $1 \mathrm{M} \mathrm{NaH} 2_{2} \mathrm{PO}_{4}$ and 50 ml of 1 M NaOH
c) 50 ml of $1 \mathrm{M} \mathrm{NaH}_{2} \mathrm{PO}_{4}$ and 25 ml of 1 M NaOH
d) $\quad 25 \mathrm{ml}$ of $1 \mathrm{M} \mathrm{NaH}_{2} \mathrm{PO}_{4}$ and $\quad 50 \mathrm{ml}$ of 1 M NaOH

Concept

You have a sample of water containing phosphoric acid. The pH of the sample is 12.3. Which protonation states of phosphoric acid are present in significant amounts?

$$
\begin{array}{llll}
\mathrm{H}_{3} \mathrm{PO}_{4} & \mathrm{H}_{2} \mathrm{PO}_{4}^{-} & \mathrm{HPO}_{4}{ }^{-} & \mathrm{PO}_{4}^{-3}
\end{array}
$$

4) pH of solutions containing multi-protic weak acids?

$\mathrm{CO}_{2}(\mathrm{~g})$	$\leftarrow \rightarrow$	$\mathrm{CO}_{2(\mathrm{aq})}$	$\mathrm{K}=0.034$	
$\mathrm{CO}_{2(\mathrm{aq})}+2 \mathrm{H}_{2} \mathrm{O}$	$\leftarrow \rightarrow$	$\mathrm{H}_{3} \mathrm{O}^{+}+\mathrm{HCO}_{3}^{-}$	$\mathrm{K}_{\mathrm{a} 1}=4.3 \times 10^{-7}$	$\mathrm{pK}_{\mathrm{a} 1}=6.37$
$\mathrm{HCO}_{3}^{-}+\mathrm{H}_{2} \mathrm{O}$	$\leftarrow \rightarrow$	$\mathrm{H}_{3} \mathrm{O}^{+}+\mathrm{CO}_{3}^{=}$	$\mathrm{K}_{\mathrm{a} 2}=4.8 \times 10^{-11}$	$\mathrm{pK}_{\mathrm{a} 2}=10.32$

The partial pressure of CO_{2} in the atmosphere is $3.55 \times 10^{-4} \mathrm{~atm}$. What is the pH of water in equilibrium with air?

Suppose a can of soda contains a gas mixture for which the partial pressure of CO_{2} is 1 atm . What is the pH of the soda?

5) General solution of aqueous equilibria

What is the pH of $1.0 \times 10^{-5} \mathrm{M} \mathrm{HCN}$?

