
Lecture Notes T: Acid-Base Chemistry VII

1) Using titrations to determine the properties of unknown solutions

Titration of an unknown acid with 1M NaOH

Consider the following titration curve:

Label the equivalence point, V_{eq} , and the buffer point.

How many moles of acid did I start with?

- a) 0.25 mol
- b) 0.025 mol
- c) 0.0125 mol

What is the pK_a for this acid?

- a) 8.8
- b) 4.2
- c) 2.2

What is the pH range of buffers I can make with this acid and its conjugate base?

If I mixed this acid with Sodium Acetate (p $K_a = 4.75$), would the acid give up its proton?

What reaction would you use to calculate the pH at the start of the reaction?

a)
$$HA + H_2O \leftarrow A^- + H_3O^+$$

b)
$$HA + OH^{-} + A^{-} + H_{2}O$$

When 20 mL of NaOH has been added, what is the dominant species in solution?

- a) HA
- b) A
- c) OH
- d) H_3O^+

2) Weak Bases

What is the pH of a 0.10 M solution of NH₃ in water? From Table 10.2: $NH_4^+ + H_2O \leftarrow NH_3 + H_3O^+$ $pK_a = 9.25 K_a = 10^{-9.25} = 5.6 \times 10^{-10}$

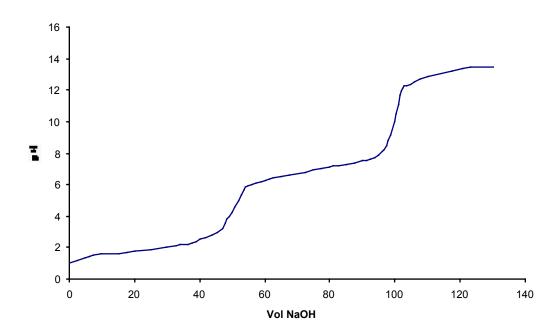
How would you make a pH = 10 buffer from 0.10M NH₃ and 0.10M NH₄Cl?

3) Polyprotic Acids

Phosphoric Acid:

$$H_{3}PO_{4} + H_{2}O \iff H_{3}O^{+} + H_{2}PO_{4}^{-}$$
 $H_{2}PO_{4}^{-} + H_{2}O \iff H_{3}O^{+} + HPO_{4}^{2-}$
 $PK_{a1} = 2.12$
 $pK_{a1} = 7.52 \times 10^{-3}$
 $pK_{a1} = 7.21$
 $pK_{a2} = 6.23 \times 10^{-8}$
 $pK_{a1} = 12.67$
 $pK_{a3} = 2.2 \times 10^{-13}$

Sulfurous Acid:


$$H_2SO_3 + H_2O \iff H_3O^+ + HSO_3^- pK_{a1} = 1.81 K_{a1} = 1.54 \times 10^{-2} HSO_3^- + H_2O \iff H_3O^+ + SO_3^{2-}pK_{a2} = 6.91 K_{a2} = 1.02 \times 10^{-7}$$

Using the Sulfurous acid system, make a buffer with a pH = 7.

In the above system, what is the concentration of H₂SO₃?

I want to make a pH = 12 buffer, and all I have is Na_3PO_4 and HCl. How do I go about doing this?

4) Titration of a polyprotic acid

5) Carbon Dioxide

$$CO_{2}(g) \leftarrow CO_{2}(aq)$$
 $K = 0.034$ $CO_{2}(aq) + 2 H_{2}O \leftarrow H_{3}O^{+} + HCO_{3}^{-}$ $pK_{a1} = 6.37$ $K_{a1} = 4.3 \times 10^{-7}$ $pK_{a2} = 10.32$ $K_{a2} = 4.8 \times 10^{-11}$

The partial pressure of CO_2 in the atmosphere is 3.55×10^{-4} atm. What is the pH of water in equilibrium with air?

Suppose a can of soda contains a gas mixture for which the partial pressure of CO_2 is 1 atm. What is the pH of the soda?