Lecture Notes T: Acid-Base Chemistry VII

1) Using titrations to determine the properties of unknown solutions

Titration of an unknown acid with 1 M NaOH

Consider the following titration curve:
Label the equivalence point, V_{eq}, and the buffer point.
How many moles of acid did I start with?
a) 0.25 mol
b) 0.025 mol
c) 0.0125 mol

What is the $p K_{a}$ for this acid?
a) 8.8
b) 4.2
c) 2.2

What is the pH range of buffers I can make with this acid and its conjugate base?

If I mixed this acid with Sodium Acetate $\left(p K_{a}=4.75\right)$, would the acid give up its proton?

What reaction would you use to calculate the pH at the start of the reaction?
a) $\mathrm{HA}+\mathrm{H}_{2} \mathrm{O} \longleftrightarrow \mathrm{A}^{-}+\mathrm{H}_{3} \mathrm{O}^{+}$
b) $\mathrm{HA}+\mathrm{OH}^{-} \longleftrightarrow \mathrm{A}^{-}+\mathrm{H}_{2} \mathrm{O}$

When 20 mL of NaOH has been added, what is the dominant species in solution?
a) HA
b) A^{-}
c) OH^{-}
d) $\mathrm{H}_{3} \mathrm{O}^{+}$

2) Weak Bases

What is the pH of a $0.10 \mathrm{M}_{\text {solution of } \mathrm{NH}_{3} \text { in water? }}$
From Table 10.2: $\mathrm{NH}_{4}^{+}+\mathrm{H}_{2} \mathrm{O} \longleftrightarrow \mathrm{NH}_{3}+\mathrm{H}_{3} \mathrm{O}^{+} \quad \mathrm{pK}_{\mathrm{a}}=9.25 \quad \mathrm{~K}_{\mathrm{a}}=10^{-9.25}=5.6 \times 10^{-10}$

How would you make a $\mathrm{pH}=10$ buffer from $0.10 \mathrm{M} \mathrm{NH}_{3}$ and 0.10 M NH 44 ?

3) Polyprotic Acids

Phosphoric Acid:

$$
\begin{aligned}
& \mathrm{H}_{3} \mathrm{PO}_{4}+\mathrm{H}_{2} \mathrm{O} \leftrightarrows \mathrm{H}_{3} \mathrm{O}^{+}+\mathrm{H}_{2} \mathrm{PO}_{4}^{-} \\
& \mathrm{H}_{2} \mathrm{PO}_{4}^{-}+\mathrm{H}_{2} \mathrm{O} \leftrightarrows \mathrm{H}_{3} \mathrm{O}^{+}+\mathrm{HPO}_{\mathrm{a} 1}=2.12 \\
& \mathrm{HPO}_{4}{ }^{2-}+\mathrm{H}_{2} \mathrm{O} \leftrightarrows \mathrm{~K}_{\mathrm{a} 1}=7.52 \times 10^{-3} \\
& \mathrm{pH}_{\mathrm{a} 1}=7.21 \\
& \mathrm{~K}_{\mathrm{a} 2}=6.23 \times 10^{-8} \\
& \text { ous Acid: } \\
& \mathrm{H}_{2} \mathrm{SO}_{3}+\mathrm{PO}_{4}{ }^{3-}
\end{aligned} \begin{array}{lll}
\mathrm{HK}_{2} \mathrm{O} & \mathrm{pK}_{\mathrm{a} 1}=12.67 & \mathrm{~K}_{\mathrm{a} 3}=2.2 \times 10^{-13} \\
\mathrm{HSO}_{3}{ }^{-}+\mathrm{H}_{2} \mathrm{O} \leftrightarrows \mathrm{H}_{3} \mathrm{O}^{+}+\mathrm{HSO}_{3}{ }^{-} & \mathrm{pK}_{\mathrm{a} 1}=1.81 & \mathrm{~K}_{\mathrm{a} 1}=1.54 \times 10^{-2} \\
\mathrm{H}_{3} \mathrm{O}^{+}+\mathrm{SO}_{3}{ }^{-}-\mathrm{pK}_{\mathrm{a} 2}=6.91 & \mathrm{~K}_{\mathrm{a} 2}=1.02 \times 10^{-7}
\end{array}
$$

Sulfurous Acid:

Using the Sulfurous acid system, make a buffer with a $\mathrm{pH}=7$.

In the above system, what is the concentration of $\mathrm{H}_{2} \mathrm{SO}_{3}$?

I want to make a $\mathrm{pH}=12$ buffer, and all I have is $\mathrm{Na}_{3} \mathrm{PO}_{4}$ and HCl . How do I go about doing this?

4) Titration of a polyprotic acid

5) Carbon Dioxide

$\mathrm{CO}_{2}(\mathrm{~g}) \longleftrightarrow \mathrm{CO}_{2}$ (aq) $\quad \mathrm{K}=0.034$
$\begin{array}{lll}\mathrm{CO}_{2}(\mathrm{aq})+2 \mathrm{H}_{2} \mathrm{O} \leftrightarrows \mathrm{H}_{3} \mathrm{O}^{+}+\mathrm{HCO}_{3}^{-} & \mathrm{pK}_{\mathrm{a} 1}=6.37 & \mathrm{~K}_{\mathrm{a} 1}=4.3 \times 10^{-7} \\ \mathrm{HCO}_{3}^{-}+\mathrm{H}_{2} \mathrm{O} セ \mathrm{H}_{3} \mathrm{O}^{+}+\mathrm{HCO}_{3}^{-} & \mathrm{pK}_{\mathrm{a} 2}=10.32 & \mathrm{~K}_{\mathrm{a} 2}=4.8 \times 10^{-11}\end{array}$
The partial pressure of CO_{2} in the atmosphere is $3.55 \times 10^{-4} \mathrm{~atm}$. What is the pH of water in equilibrium with air?

Suppose a can of soda contains a gas mixture for which the partial pressure of CO_{2} is 1 atm . What is the pH of the soda?

