Lecture Notes Q: Acid-Base Chemistry IV

1) The Henderson-Hasselbalch equation

$$
\begin{array}{clcc}
\mathrm{A}^{-}+\mathrm{H}_{3} \mathrm{O}^{+} \longleftrightarrow \mathrm{HA}+\mathrm{H}_{2} \mathrm{O} & 1 / \mathrm{K}_{\mathrm{a}} \gg 1 \\
\mathrm{HA}+\mathrm{OH}^{-} \longleftrightarrow \mathrm{A}^{-}+\mathrm{H}_{2} \mathrm{O} & \mathrm{~K}=1 / \mathrm{K}_{\mathrm{b}}=\mathrm{K}_{\mathrm{a}} / \mathrm{K}_{\mathrm{w}} \gg 1
\end{array}
$$

Concept

I start with 100 ml of a buffer solution that is 1 M in HAc and 1 M in Ac^{-}. To this I will add solid NaOH , such that the volume does not change. If I add 0.010 mole of NaOH to the solution, which of the following is true:
a) $[\mathrm{HAc}]=0.9 \mathrm{M}$ and $\left[\mathrm{Ac}^{-}\right]=0.9 \mathrm{M}$
b) $[\mathrm{HAc}]=0.9 \mathrm{M}$ and $\left[\mathrm{Ac}^{-}\right]=1.1 \mathrm{M}$
c) $[\mathrm{HAc}]=1.1 \mathrm{M}$ and $\left[\mathrm{Ac}^{-}\right]=0.9 \mathrm{M}$
d) $[\mathrm{HAc}]=1.1 \mathrm{M}$ and $\left[\mathrm{Ac}^{-}\right]=1.1 \mathrm{M}$

Consider 100 ml of a buffer solution that is 1.0 M in HAc and 1.0 M in NaAc . What is the pH after addition of 25 ml of 1.0 M NaOH ?

I start with 100 ml of a buffer solution that is 1 M in HAc and 1 M in Ac^{-}. I add 0.010 mole of a strong acid to the solution, which of the following is true:
a) $[\mathrm{HAc}]=0.9 \mathrm{M}$ and $\left[\mathrm{Ac}^{-}\right]=0.9 \mathrm{M}$
b) $[\mathrm{HAc}]=0.9 \mathrm{M}$ and $\left[\mathrm{Ac}^{-}\right]=1.1 \mathrm{M}$
c) $[\mathrm{HAc}]=1.1 \mathrm{M}$ and $\left[\mathrm{Ac}^{-}\right]=0.9 \mathrm{M}$
d) $[\mathrm{HAc}]=1.1 \mathrm{M}$ and $\left[\mathrm{Ac}^{-}\right]=1.1 \mathrm{M}$

2) Making a buffer

Mix acid (HA) and conjugate base (NaA) together

Mix acid (HA) and strong base (NaOH) together

Mix base (NaA) and strong acid together (HCl) together

A mixture of 50 ml of 1 M HAc and 50 ml of 0.5 M NaOH is equivalent to:
a) a 0.5 M solution of NaAc
b) a 0.25 M solution of NaAc
c) a solution that is 0.5 M in HAc and 0.5 M in NaAc
d) a solution that is 0.25 M in HAc and 0.25 M in NaAc

A mixture of 50 ml of 1 M NaAc and 50 ml of 1 M HCl will have the same pH as:
a) a 0.5 M solution of NaAc
b) a 0.5 M solution of HAc
c) a solution that is 0.5 M in HAc and 0.5 M in NaAcc
d) a solution that is 0.25 M in HAc and 0.25 M in NaAc

Will each of the following lead to a buffer solution with $\left[\mathrm{Ac}^{-}\right]=[\mathrm{HAc}]$?
a) yes
b) no
a) yes
b) no
a) yes
b) no
a) yes
b) no

I want to make a solution that will have $\left[\mathrm{Ac}^{-}\right]=3[\mathrm{HAc}]$. I start with 100 ml of a 1 M HAc solution. How many ml of a 1 M NaOH solution should I add?
a) 2.5 ml
b) 7.5 ml
c) 25 ml
d) 75 ml

