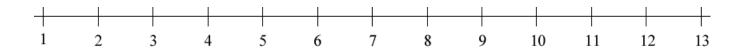
Lecture Notes P: Acid-Base Chemistry III

1) Who wants protons more (or who wins in a fight for protons)

Mix HF with NaCN, or mix NaF with HCN

$HF + H_2O \rightleftharpoons$	$H_3O^+ + F^-$	$K_a = 6.6 \times 10^{-4}$	pKa = 3.18
HCN + H ₂ O \rightleftharpoons	$H_3O^+ + CN^-$	$K_a = 6.17 \times 10^{-10}$	pKa = 9.21


concept

You have 50 ml of a complex mixture of weak acids that contains some HF and some HCN. Which is larger, $[F^-]/[HF]$ or $[CN^-]/[HCN]$?

(a) $[F^{-}]/[HF]$ (b) $[CN^{-}]/[HCN]$ (c) can'	t tell from available information
--	-----------------------------------

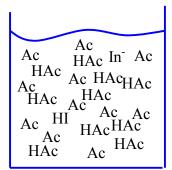
2) Once you know the pH, what does a weak acid look like.

If you know the temperature of Pittsburgh, you can say what it feels like. This is much easier than calculating/predicting the temperature of Pittsburgh.

Concept

Some side chains in proteins contain sites that can exchange protons with the surrounding water (i.e. they are weak acids). Consider a protein with the following side chains,

Amino Acid	side-chain	Amino Acid	side-chain
Arginine Aspartic Acid Cysteine Glutamic acid	$pK_a = 12.48$ $pK_a = 3.90$ $pK_a = 8.33$ $pK_a = 4.07$	Histidine Lysine Tyrosine	$pK_a = 6.04$ $pK_a = 10.79$ $pK_a = 10.13$


Given that the pH of blood is about 7.3, how many of the above side chains would be in their ionic form (A⁻) in blood?

A) 2 B) 3 C) 4 D) 5

3) pH indicators

Consider an indicator that is a weak acid with $K_a = 1.4 \times 10^{-9}$ (pK_a = 8.8). The protonated form (HIn) is colorless, and the deprotonated form (In⁻) is pink. [This is similar to the indicator Phenolphtalein.]

Who is controlling the pH, and who is being controlled by the pH?

What is the ratio between the protonated and deprotonated forms ([HA]/[A⁻]) when the pH is 7.8?

What is the ratio between the protonated and deprotonated forms ([HA]/[A⁻]) when the pH is 8.8?

What is the ratio between the protonated and deprotonated forms ([HA]/[A⁻]) when the pH is 9.8?

4) How buffers work.

As the pH changes, the ratio of $[A^-]/[HA]$ changes.

Corollary: To change the pH you have to change the ratio [A⁻]/[HA].

So if you have a bunch of [A⁻] and [HA] present, and you want the pH to go up, you have to convert most of the HA into A⁻.

Consider starting with 100ml of a mixture in which $[A^-] = [HA] = 1M$.

Now add enough OH⁻ to convert half the HA into A⁻ (50ml of 1M NaOH).

HA + OH⁻ $\leftarrow \rightarrow$ A⁻ + H₂O K = 1/K_b = K_a/K_w >> 1

If you had added 50ml of 1M NaOH to 100ml of water, the pH would be:

Similarly, if you add enough H_3O^+ to convert half the A⁻ into HA (50 ml of 1M HCl).

 A^- + H_3O^+ $\leftarrow \rightarrow$ HA + H_2O $1/K_a >> 1$

If you had added 50ml of 1M NaOH to 100ml of water, the pH would be: