Lecture Notes O: Acid-Base Chemistry II

1) Bronsted-Lowry definition of an acid and a base:

Acid: proton donor
Base: proton acceptor
Examples of Bronsted acids and bases:

$$
\mathrm{HAc}+\mathrm{H}_{2} \mathrm{O} \rightleftharpoons \mathrm{H}_{3} \mathrm{O}^{+}+\quad \mathrm{Ac}^{-} \quad\left(\mathrm{HAc}=\mathrm{CH}_{3} \mathrm{COOH}, \mathrm{Ac}^{-}=\mathrm{CH}_{3} \mathrm{COO}^{-}\right)
$$

$\mathrm{H}_{2} \mathrm{~S}+\mathrm{H}_{2} \mathrm{O} \rightleftharpoons \mathrm{H}_{3} \mathrm{O}^{+}+\mathrm{HS}^{-}$
$\mathrm{HS}^{-}+\mathrm{H}_{2} \mathrm{O} \rightleftharpoons \mathrm{H}_{3} \mathrm{O}^{+}+\mathrm{S}^{=}$

$$
\begin{aligned}
& \mathrm{NH}_{3}+\mathrm{H}_{2} \mathrm{O} \rightleftharpoons \mathrm{OH}^{-}+\mathrm{NH}_{4}^{+} \\
& \mathrm{Ac}^{-}+\mathrm{H}_{2} \mathrm{O} \rightleftharpoons \mathrm{OH}^{-}+\mathrm{HAc} \\
& \mathrm{H}_{2} \mathrm{O}+\mathrm{H}_{2} \mathrm{O} \rightleftharpoons \mathrm{H}_{3} \mathrm{O}^{+}+\mathrm{OH}^{-}
\end{aligned}
$$

2) Weak acids and bases

Hydrofluoric acid	HF +	$\mathrm{H}_{2} \mathrm{O}$	$\mathrm{H}_{3} \mathrm{O}^{+}+\mathrm{F}^{-}$	$\mathrm{K}_{\mathrm{a}}=6.6 \times 10^{-4} \mathrm{pKa}=3.18$
Formic acid	$\mathrm{HCOOH}+$	$\mathrm{H}_{2} \mathrm{O}$	$\mathrm{H}_{3} \mathrm{O}^{+}+\mathrm{HCOO}^{-}$	$\mathrm{K}_{\mathrm{a}}=1.77 \times 10^{-4} \mathrm{pKa}=3.75$
Acetic acid	$\mathrm{HAc}+$	$\mathrm{H}_{2} \mathrm{O} \rightleftharpoons$	$\mathrm{H}_{3} \mathrm{O}^{+}+\mathrm{Ac}^{-}$	$\mathrm{K}_{\mathrm{a}}=1.76 \times 10^{-5} \mathrm{pKa}=4.75$
Nitrous acid	$\mathrm{HNO}_{2}+$	$\mathrm{H}_{2} \mathrm{O}$	$\mathrm{H}_{3} \mathrm{O}^{+}+\mathrm{NO}_{2}^{-}$	$\mathrm{K}_{\mathrm{a}}=4.6 \times 10^{-4} \quad \mathrm{pKa}=3.34$
Acetyl Salicylic acid	$\mathrm{C}_{9} \mathrm{H}_{8} \mathrm{O}_{4}+$	$\mathrm{H}_{2} \mathrm{O}$	$\mathrm{H}_{3} \mathrm{O}^{+}+\mathrm{C}_{9} \mathrm{H}_{7} \mathrm{O}_{4}{ }^{-}$	$\mathrm{K}_{\mathrm{a}}=3 \times 10^{-4} \quad \mathrm{pKa}=3.52$
Hydrocyanic acid	$\mathrm{HCN}+$	$\mathrm{H}_{2} \mathrm{O}$	$\mathrm{H}_{3} \mathrm{O}^{+}+\mathrm{CN}^{-}$	$\mathrm{K}_{\mathrm{a}}=6.17 \times 10^{-10} \mathrm{pKa}=9.21$
Ammonia	$\mathrm{NH}_{3}+$	$\mathrm{H}_{2} \mathrm{O} \rightleftharpoons$	$\mathrm{NH}_{4}^{+}+\mathrm{OH}^{-}$	$\mathrm{K}_{\mathrm{b}}=1.79 \times 10^{-5} \mathrm{pK}_{\mathrm{b}}=4.74$
	$\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{NH}_{2}+$	$\mathrm{H}_{2} \mathrm{O} \rightleftharpoons$	$\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{NH}_{3}^{+}+\mathrm{OH}^{-}$	$\mathrm{K}_{\mathrm{b}}=5.6 \times 10^{-4} \quad \mathrm{pK}_{\mathrm{b}}=3.25$

Problem

What is the pH of a 1 M solution of acetic acid?

3) Hydrolysis

What is the pH of a 1 M solution of Sodium Acetate?

Concept

Consider an exceptionally weak acid, HA, with a $\mathrm{K}_{\mathrm{a}}=1 \times 10^{-20}$. You make a 0.1 M solution of the salt NaA. What is the pH ?
a) 1
b) 2
c) 12
d) 13

4) Various acid-base reactions

Acid dissociation

$$
\mathrm{HAc}+\mathrm{H}_{2} \mathrm{O} \quad \leftrightarrow \mathrm{H}_{3} \mathrm{O}^{+}+\quad \mathrm{Ac}^{-} \quad \mathrm{K}_{\mathrm{a}}=1.76 \times 10^{-5}\left(\mathrm{pK}_{\mathrm{a}}=4.75\right)
$$

Hydrolysis
$\mathrm{Ac}^{-}{ }^{+} \mathrm{H}_{2} \mathrm{O}$
$\leftrightarrow \mathrm{OH}^{-}+$
HAc
$\mathrm{K}_{\mathrm{b}}=\mathrm{K}_{\mathrm{w}} / \mathrm{K}_{\mathrm{a}}=5.68 \times 10^{-10}$.

Reverse of the above:
$\mathrm{Ac}^{-}+\mathrm{H}_{3} \mathrm{O}^{+} \longleftrightarrow \mathrm{HAc}+\mathrm{H}_{2} \mathrm{O}$
$1 / K_{a}=5.68 \times 10^{4}$
$\mathrm{HAc}+\mathrm{OH}^{-} \longleftrightarrow \rightarrow \mathrm{Ac}^{-}+\mathrm{H}_{2} \mathrm{O}$
$1 / \mathrm{K}_{\mathrm{b}}=1.76 \times 10^{9}$

