Lecture Notes O: Acid-Base Chemistry II

1) Bronsted-Lowry definition of an acid and a base:

Acid: proton donor Base: proton acceptor

Examples of Bronsted acids and bases:

$$HAc + H_2O \Rightarrow H_3O^+ + Ac^- (HAc = CH_3COOH, Ac^- = CH_3COO^-)$$

$$H_2S + H_2O = H_3O^+ + HS^-$$

$$HS^- + H_2O \Rightarrow H_3O^+ + S^=$$

$$NH_3 + H_2O \Rightarrow OH^- + NH_4^+$$

$$Ac^{-} + H_2O \Rightarrow OH^{-} + HAc$$

$$H_2O + H_2O \Rightarrow H_3O^+ + OH^-$$

2) Weak acids and bases

Hydrofluoric acid	HF +	$H_2O \rightleftharpoons$	$H_3O^+ + F^-$	$K_a = 6.6 \times 10^{-4}$ pKa = 3.18
Formic acid	HCOOH +	$H_2O \rightleftharpoons$	$H_3O^+ + HCOO^-$	$K_a = 1.77 \times 10^{-4} \text{ pKa} = 3.75$
Acetic acid	HAc+	$H_2O \Rightarrow$	$H_3O^+ + Ac^-$	$K_a = 1.76 \times 10^{-5} \text{ pKa} = 4.75$
Nitrous acid	HNO ₂ +	$H_2O \Rightarrow$	$H_3O^+ + NO_2^-$	$K_a = 4.6 \times 10^{-4}$ pKa = 3.34
Acetyl Salicylic acid	$C_9H_8O_4 +$	$H_2O \Rightarrow$	$H_3O^+ + C_9H_7O_4^-$	$K_a = 3x10^{-4}$ $pKa = 3.52$
Hydrocyanic acid	HCN +	$H_2O \Rightarrow$	$H_3O^+ + CN^-$	$K_a = 6.17 \times 10^{-10} \text{ pKa} = 9.21$
Ammonia	$NH_3 +$	$H_2O \Rightarrow$	$NH_4^+ + OH^-$	$K_b=1.79x10^{-5} pK_b=4.74$
	$C_2H_5NH_2 +$	$H_2O \rightleftharpoons$	$C_2H_5NH_3^+ + OH^-$	$K_b = 5.6 \times 10^{-4}$ $pK_b = 3.25$

Problem

What is the pH of a 1M solution of acetic acid?

3) Hydrolysis

What is the pH of a 1M solution of Sodium Acetate?

Concept

Consider an exceptionally weak acid, HA, with a $K_a = 1 \times 10^{-20}$. You make a 0.1M solution of the salt NaA. What is the pH?

- a) 1
- b) 2
- c) 12
- d) 13

4) Various acid-base reactions

Acid dissociation

$$HAc + H_2O$$

$$\leftarrow \rightarrow \text{H}_3\text{O}^+ + \text{Ac}^-$$

$$K_a = 1.76 \times 10^{-5} \text{ (pK}_a = 4.75)$$

Hydrolysis

$$Ac^{-}$$
 H_2O

$$K_b = K_w/K_a = 5.68 \times 10^{-10}$$
.

Reverse of the above:

$$Ac^{-} + H_{3}O^{+} \longleftrightarrow HAc + H_{2}O$$

$$1/K_a = 5.68 \times 10^4$$

$$HAc + OH^{-} \longleftrightarrow Ac^{-} + H_{2}O$$

$$1/K_b = 1.76 \times 10^9$$