Lecture Notes N: Acid-Base Chemistry I

1) Discussion of Laboratory 2

$\mathrm{Co}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}^{+2}{ }_{(\mathrm{aq})}+\quad 4 \mathrm{Cl}^{-}{ }_{(\mathrm{aq})} \rightleftharpoons \quad \mathrm{CoCl}_{4}^{-2}{ }_{(\mathrm{aq})}+6 \mathrm{H}_{2} \mathrm{O}$

Lab chemicals:
Cobalt Chloride Hexahydrate
$\left[\mathrm{Co}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right] \mathrm{Cl}_{2(\mathrm{~s})}$
Cobalt nitrate or sulfate
Sodium chloride
$\mathrm{Co}\left(\mathrm{NO}_{3}\right)_{2(\mathrm{~s})}$ or $\mathrm{Co}\left(\mathrm{SO}_{4}\right)_{\text {(s) }}$
NaCl

2) Water self-ionization and pH Scale

$$
\mathrm{H}_{2} \mathrm{O}_{(\mathrm{l})}+\mathrm{H}_{2} \mathrm{O}_{(\mathrm{l})} \quad \rightleftharpoons \quad \mathrm{H}_{3} \mathrm{O}_{(\mathrm{aq})}^{+}+\quad \mathrm{OH}_{(\mathrm{aq})}^{-} \quad \mathrm{K}_{\mathrm{w}}
$$

Dependence of K_{w} on Temperature:

$\mathrm{T}\left({ }^{\circ} \mathrm{C}\right)$	K_{w}
0	0.114×10^{-14}
25	1.008×10^{-14}
40	2.92×10^{-14}
60	9.61×10^{-14}

PH	2	3	4	5	6	7	8	9	10	11	12
$[\mathrm{H}+]$	10^{-2}	10^{-3}	10^{-4}	10^{-5}	10^{-6}	10^{-7}	10^{-8}	10^{-9}	10^{-10}	10^{-11}	10^{-12}
$[\mathrm{OH}-]$	10^{-12}	10^{-11}	10^{-10}	10^{-9}	10^{-8}	10^{-7}	10^{-6}	10^{-5}	10^{-4}	10^{-3}	10^{-2}

| POH | 12 | 11 | 10 | 9 | 8 | 7 | 6 | 5 | 4 | 3 | 2 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |

3) Strong acids and bases

Strong acid: $\quad \mathrm{HA} \quad+\quad \mathrm{H}_{2} \mathrm{O} \rightleftharpoons \mathrm{H}_{3} \mathrm{O}^{+}+\quad \mathrm{A}^{-} \quad \mathrm{K}_{\mathrm{a}}>1$
Strong base: $\quad \mathrm{BOH} \quad \rightleftharpoons \quad \mathrm{OH}^{-}+\quad \mathrm{B}^{+} \quad \mathrm{K}_{\mathrm{b}}>1$

Strong Acids

4) Reactions of strong acids and bases (limiting reagents, with a twist)

What is the pH of a 1.00 M solution of HCl

Consider mixing 10.0 ml of a 1.00 M NaOH solution with 25.0 ml of a 1.00 M HCl solution

Consider mixing 24.0 ml of a 1.00 M NaOH solution with 25.0 ml of a 1.00 M HCl solution

Consider mixing 25.0 ml of a 1.00 M NaOH solution with 25.0 ml of a 1.00 M HCl solution

Consider mixing 26.0 ml of a 1.00 M NaOH solution with 25.0 ml of a 1.00 M HCl solution

Consider mixing 50.0 ml of a 1.00 M NaOH solution with 25.0 ml of a 1.00 M HCl solution

5) Titration of a strong acid with a strong base

Slowly add 1.0 M NaOH to 25.0 ml of 1.0 M HCl

Concept test

How many moles of solid NaOH do you need to add to 100 ml of 1 M HCl to get a pH of 7 ?
a) 0.010 moles
b) 0.10 moles
c) 0.50 moles
d) 1.0 moles

How many ml of 5 M NaOH do you need to add to 100 ml of 1 M HCl to get a pH of 7 ?
a) 10 ml
b) 20 ml
c) 25 ml
d) 50 ml

10 ml of 1 M NaOH is mixed with 7 ml of 2 M HCl . The resulting solution is:
a) $\operatorname{acidic}(\mathrm{pH}<7)$
b) basic $(\mathrm{pH}>7)$
c) neutral $(\mathrm{pH}=7)$

How many ml of 1 M NaOH do you need to add to 100 ml of 1 M HCl to get a pH of 8 ?
a) 100 ml
b) 125 ml
c) 150 ml
d) none of the above

A comic book villain is holding you at gun point and is making you drink a sample of acid. She gives you a beaker with 100 ml of a strong acid with $\mathrm{pH}=2$. She also gives you a beaker of a strong base with a $\mathrm{pH}=13$. You can add as much of the strong base to the strong acid as you want, and you must then drink the solution. You'd be best off trying to make the solution neutral before drinking it. How much of the base should you add?
a) 1 ml
b) 10 ml
c) 100 ml
d) 1000 ml

