Lecture Notes L: Chemical Equilibrium IV

1) Partial Pressures

You have a 1.00 liter vessel at $25^{\circ} \mathrm{C}$ containing a 1.00 atm of a mixture that is $25 \% \mathrm{Ne}$ and $75 \% \mathrm{Ar}$ (by volume). What is the partial pressure of Ne and Ar ?

Keeping the volume of the vessel fixed at 1.00 liter, you add 1.00 atm of Kr . What is the partial pressure of Ne ?
a) 0.125 atm
b) 0.25 atm
c) 0.50 atm
d) 1.0 atm

You heat the vessel to $50^{\circ} \mathrm{C}$. What is the partial pressure of Ne in the vessel?

Problem

Consider a 1 liter container filled with NO_{2} gas. The following dimerization reaction occurs in this gas.

	$2 \mathrm{NO}_{2(\mathrm{~g})} \leftrightarrow$	$\mathrm{N}_{2} \mathrm{O}_{4}(\mathrm{~g})$	
$\Delta \mathrm{H}_{\mathrm{f}}^{\mathrm{o}}(\mathrm{kJ} / \mathrm{mol})$	33.18	9.16	$\Delta \mathrm{H}^{\mathrm{o}}=-57.20 \mathrm{~kJ} / \mathrm{mol}$
$\mathrm{S}^{\mathrm{o}}(\mathrm{J} / \mathrm{mol} \mathrm{K})$	239.95	304.18	$\Delta \mathrm{~S}^{\mathrm{o}}=-175.72 \mathrm{~J} / \mathrm{mol} \mathrm{K}$
Color:	brown	colorless	

The container has a temperature of $25^{\circ} \mathrm{C}$ and a total pressure of 1 atm . What is the ratio of $\mathrm{P}_{\mathrm{NO} 2}$ to $\mathrm{P}_{\mathrm{N} 2 \mathrm{O} 4}$ at room temperature $\left(25^{\circ} \mathrm{C}\right)$?

2) Le Chatelier's principle

A system in equilibrium that is subjected to a stress will react in a way that tends to counteract the stress.

Changing the concentration of a reactant or product

$$
\mathrm{A}+\mathrm{B} \quad \leftrightarrow \quad \mathrm{C}+\mathrm{D}
$$

Changing the volume (leads to a change in total pressure)

$$
\mathrm{A}_{(\mathrm{g})}+\mathrm{B}_{(\mathrm{g})} \quad \leftrightarrow \quad \mathrm{C}_{(\mathrm{g})}
$$

Changing the temperature

A $+B$
\leftrightarrow
C + heat
$\Delta \mathrm{H}<0$
heat $+\mathrm{A}+\mathrm{B} \quad \leftrightarrow \quad \mathrm{C}$
$\Delta \mathrm{H}>0$

$$
2 \mathrm{NO}_{2(\mathrm{~g})} \leftrightarrow \quad \mathrm{N}_{2} \mathrm{O}_{4}(\mathrm{~g})
$$

The volume of the container is decreased to 0.5 liter. What happens to the ratio of $\mathrm{P}_{\mathrm{NO} 2}$ to $\mathrm{P}_{\mathrm{N} 2 \mathrm{O} 4}$?
a) It increases
b) It decreases
c) Nothing

Calculate the ratio of $\mathrm{P}_{\mathrm{NO} 2}$ to $\mathrm{P}_{\mathrm{N} 2 \mathrm{O} 4}$ when the volume of the container is decreased to 0.5 liter

Consider the 1 liter container of NO_{2} discussed above. The temperature of the container is increased to $100^{\circ} \mathrm{C}$. What happens to the ratio of $\mathrm{P}_{\mathrm{NO} 2}$ to $\mathrm{P}_{\mathrm{N} 2 \mathrm{O} 4}$?
a) It increases
b) It decreases
c) Nothing
d) Not obvious (have to do calculation)

Calculate the ratio of $\mathrm{P}_{\mathrm{NO} 2}$ to $\mathrm{P}_{\mathrm{N} 2 \mathrm{O} 4}$

