Lecture Notes K: Chemical Equilibrium III

Problem

A sample of solid ammonium hydrogen sulfide $\left(\mathrm{NH}_{4} \mathrm{HS}\right)$ is placed in a container and all of the air is pumped out. Later on, the pressure inside the container is found to be 0.659 atm . The temperature of the system is $25^{\circ} \mathrm{C}$. Assume that ammonium hydrogen sulfide is decomposing according to the reaction shown below. What is $\Delta \mathrm{G}^{\circ}$ for this reaction.

$$
\mathrm{NH}_{4} \mathrm{HS}_{(\mathrm{s})} \leftrightarrow \mathrm{NH}_{3(\mathrm{~g})}+\mathrm{H}_{2} \mathrm{~S}_{(\mathrm{g})}
$$

Problem

0.360 atm of $\mathrm{SO}_{2}(\mathrm{~g})$ and 0.534 atm of $\mathrm{SO}_{3}(\mathrm{~g})$ are mixed together in a constant-volume container at $1000^{\circ} \mathrm{K}$. At equilibrium, the total pressure is 0.995 atm . What is the equilibrium constant for the following reaction, at $1000^{\circ} \mathrm{K}$.

$$
\mathrm{SO}_{2}(\mathrm{~g})+\quad 1_{2} \mathrm{O}_{2}(\mathrm{~g}) \quad \leftrightarrow \quad \mathrm{SO}_{3}(\mathrm{~g})
$$

Problem

Consider the binding between a dye molecule and DNA:
Dye + DNA \leftrightarrow DNA-Dye $\quad K_{\text {binding }}=4000$
You mix 5.0 ml of a solution containing DNA at a concentration of $1.0 \times 10^{1} \mu \mathrm{M}$ with 1.0 ml of a solution that contains dye with a concentration of 0.0050 M . At equilibrium, what percent of the DNA is bound to the dye?

