Lecture Notes K: Chemical Equilibrium III

Problem

A sample of solid ammonium hydrogen sulfide (NH₄HS) is placed in a container and all of the air is pumped out. Later on, the pressure inside the container is found to be 0.659 atm. The temperature of the system is 25°C. Assume that ammonium hydrogen sulfide is decomposing according to the reaction shown below. What is ΔG^o for this reaction.

 $NH_4HS_{(s)} \leftrightarrow NH_{3(g)} + H_2S_{(g)}$

Problem

0.360 atm of $SO_2(g)$ and 0.534 atm of $SO_3(g)$ are mixed together in a constant-volume container at 1000° K. At equilibrium, the total pressure is 0.995 atm. What is the equilibrium constant for the following reaction, at 1000° K.

$$SO_2(g) +$$

$$^{1}/_{2}O_{2}(g)$$

$$\leftrightarrow$$
 SO₃(g)

Problem

Consider the binding between a dye molecule and DNA:

Dye + DNA
$$\leftrightarrow$$
 DNA-Dye $K_{binding}$ = 4000

You mix 5.0 ml of a solution containing DNA at a concentration of $1.0x10^1 \,\mu\text{M}$ with 1.0ml of a solution that contains dye with a concentration of 0.0050 M. At equilibrium, what percent of the DNA is bound to the dye?