Lecture Notes H: Chemical Equilibrium I

1) ΔG tells us whether a reaction is "spontaneous"

How do we quantify the degree of spontaneity?

$$
\mathrm{aA}+\mathrm{bB} \rightarrow \mathrm{cC}+\mathrm{dD}
$$

2) Law of Mass Action

For a reaction: $\mathrm{aA}+\mathrm{bB} \rightarrow \mathrm{cC}+\mathrm{dD}$

Consider starting with 1 atm of H_{2} and 1 atm of I_{2}. These will react according to the following reaction:

$$
\mathrm{H}_{2(\mathrm{~g})}+\mathrm{I}_{2(\mathrm{~g})} \leftrightarrow 2 \mathrm{HI}_{(\mathrm{g})}
$$

At equilibrium, you find 0.213 atm each of H_{2} and I_{2} and 1.573 atm of I_{2} :

	$\mathrm{H}_{2(\mathrm{~g})}+$	$\mathrm{I}_{2(\mathrm{~g})}$	\leftrightarrow	$2 \mathrm{HI}_{(\mathrm{g})}$
Initially	1 atm	1 atm		0
At equilibrium	0.213 atm	0.213 atm		1.573 atm

If we then add 1 atm of I_{2} (raising it to 1.213 atm), the system will adjust and at equilibrium, the pressures will be as follows,

Initially
At equilibrium
$\mathrm{H}_{2(\mathrm{~g})}+\quad \mathrm{I}_{2(\mathrm{~g})} \quad \leftrightarrow \quad 2 \mathrm{HI}_{(\mathrm{g})}$
$0.213 \mathrm{~atm} \quad 1.213 \mathrm{~atm} \quad 1.573 \mathrm{~atm}$
$0.0612 \mathrm{~atm} \quad 1.061 \mathrm{~atm} \quad 1.878 \mathrm{~atm}$

3) The equilibrium constant

$$
\mathrm{aA}+\mathrm{bB} \rightarrow \mathrm{cC}+\mathrm{dD}
$$

Concept

Consider the reaction: $\mathrm{A}_{2}+\mathrm{B}_{2} \leftrightarrow 2 \mathrm{AB}$
The reactants are mixed together and the following is a plot of the reactant and product concentrations with time:

What is the value of the equilibrium constant?
(A) $1 / 2$
(B) 1
(C) 2
(D) 4
4) Relation between the equilibrium constant and ΔG°.

5) RT as "thermal energy"

Consider an isomerization process:

Concept

The equilibrium constant for a certain reaction is 100 . If the temperature is doubled, what happens to K (assuming that $\Delta \mathrm{G}^{0}$ is independent of temperature)?
a) K stays the same
b) new $\mathrm{K}=1000$
c) new $K=10$
d) new $K=100 * e^{2}$

The equilibrium constant for a certain reaction is 0.01 . If the temperature is doubled, what happens to K (assuming that $\Delta \mathrm{G}^{0}$ is independent of temperature)?
a) K stays the same
b) new $K=0.0001$
c) new $K=0.1$
d) new $K=(1 / 100) * e^{-2}$

6) Properties of Equilibrium Constants:

Consider the following reactions

$$
A+2 B \leftrightarrow C
$$

Multiply reaction coefficients by n

$$
2 \mathrm{~A}+4 \mathrm{~B} \leftrightarrow 2 \mathrm{C}
$$

Reverse reaction
$\mathrm{C} \leftrightarrow \mathrm{A}+2 \mathrm{~B}$

Add two reactions

1)	$\mathrm{A}+\mathrm{B} \leftrightarrow \mathrm{C}$	$\Delta \mathrm{G}_{1}$
2)	$\mathrm{B}+\mathrm{C} \leftrightarrow \mathrm{D}$	$\Delta \mathrm{G}_{2}$
3)	$\mathrm{A}+2 \mathrm{~B} \leftrightarrow \mathrm{D}$	$\Delta \mathrm{G}_{3}$

Concept

From a chemical handbook you find the equilibrium constants that give the concentrations of Iodine vapor above water and oil:
$\mathrm{I}_{2}($ water $) \leftrightarrow \mathrm{I}_{2}(\mathrm{~g}) \quad \mathrm{K}_{\text {water }}$
$\mathrm{I}_{2}($ oil $) \leftrightarrow \mathrm{I}_{2}(\mathrm{~g}) \quad \mathrm{K}_{\text {oil }}$
But you want the equilibrium constant for the partitioning of I_{2} between water and oil $\mathrm{I}_{2}($ water $) \leftrightarrow \mathrm{I}_{2}($ oil $) \quad \mathrm{K}$

You can obtain it as:
a) $\mathrm{K}=\mathrm{K}_{\text {water }}+\mathrm{K}_{\text {oil }}$
b) $\mathrm{K}=\mathrm{K}_{\text {water }} \mathrm{K}_{\text {oil }}$
c) $\mathrm{K}=\mathrm{K}_{\text {water }} / \mathrm{K}_{\text {oil }}$
d) $\mathrm{K}=\mathrm{K}_{\text {oil }} / \mathrm{K}_{\text {water }}$

7) Reaction Quotient

When the mass action expression is not equal to K, its value is denoted Q .

$$
\mathrm{aA}+\mathrm{bB} \rightarrow \mathrm{cC}+\mathrm{dD}
$$

concept

Consider the reaction:
$\mathrm{N}_{2}+3 \mathrm{H}_{2} \leftrightarrow 2 \mathrm{NH}_{3}$
The equilibrium constant at $400^{\circ} \mathrm{C}$ is $\mathrm{K}=0.5$.
Suppose we make a mixture with the following concentrations:

$$
\left[\mathrm{NH}_{3}\right]=1.0 \mathrm{M},\left[\mathrm{~N}_{2}\right]=1.0 \mathrm{M},\left[\mathrm{H}_{2}\right]=1.0 \mathrm{M}
$$

In which direction will the reaction go?
a) $\mathrm{N}_{2}+3 \mathrm{H}_{2} \rightarrow 2 \mathrm{NH}_{3}$
b) $\mathrm{N}_{2}+3 \mathrm{H}_{2} \leftarrow 2 \mathrm{NH}_{3}$

8) Heterogenous Equilibrium (a reaction involving more than one phase)

$$
\mathrm{C}(\mathrm{~s})+\mathrm{CO}_{2}(\mathrm{~g}) \leftrightarrow 2 \mathrm{CO}(\mathrm{~g})
$$

Concept Test

Consider the equilibrium expression for the following reaction:
$\mathrm{CaCO}_{3}(\mathrm{~s}) \leftrightarrow \mathrm{CaO}(\mathrm{s})+\mathrm{CO}_{2}(\mathrm{~g})$
Which of the following is true:
a) The ratio of $\mathrm{CaO}(\mathrm{s})$ to $\mathrm{CaCO}_{3}(\mathrm{~s})$ will be the same in all samples of this solid.
b) The vapor pressure of $\mathrm{CO}_{2}(\mathrm{~g})$ above a mixture of $\mathrm{CaCO}_{3}(\mathrm{~s}) / \mathrm{CaO}(\mathrm{s})$ is independent of the relative amount of these two solids.
c) You need both $\mathrm{CaO}(\mathrm{s})$ to $\mathrm{CaCO}_{3}(\mathrm{~s})$ to produce $\mathrm{CO}_{2}(\mathrm{~g})$.

