Lecture Notes H: Chemical Equilibrium I

1) ΔG tells us whether a reaction is "spontaneous"

How do we quantify the degree of spontaneity?

$$aA + bB \rightarrow cC + dD$$

2) Law of Mass Action

For a reaction: $aA + bB \rightarrow cC + dD$

Consider starting with 1 atm of H₂ and 1 atm of I₂. These will react according to the following reaction:

 $H_{2\,(g)} + I_{2\,(g)} \, \leftrightarrow 2HI_{\,(g)}$

At equilibrium, you find 0.213 atm each of H_2 and I_2 and 1.573 atm of I_2 :

	$H_{2(g)} +$	I _{2 (g)}	\leftrightarrow	2 HI _(g)
Initially	1 atm	1atm		0
At equilibrium	0.213atm	0.213atm		1.573atm

If we then add 1atm of I_2 (raising it to 1.213 atm), the system will adjust and at equilibrium, the pressures will be as follows,

,	$H_{2(g)} +$	I _{2 (g)}	\leftrightarrow	2 HI (g)
Initially	0.213atm	1.213atm		1.573atm
At equilibrium	0.0612atm	1.061atm		1.878atm

3) The equilibrium constant

 $aA + bB \rightarrow cC + dD$

Concept

Consider the reaction: $A_2 + B_2 \leftrightarrow 2AB$

The reactants are mixed together and the following is a plot of the reactant and product concentrations with time:

What is the value of the equilibrium constant?

(A) 1/2 (B) 1 (C) 2 (D) 4

4) Relation between the equilibrium constant and ΔG° .

5) RT as "thermal energy"

Consider an isomerization process:

Concept

The equilibrium constant for a certain reaction is 100. If the temperature is doubled, what happens to K (assuming that ΔG° is independent of temperature)?

a) K stays the same b) new K=1000 c) new K= 10 d) new K= 100*e^2

The equilibrium constant for a certain reaction is 0.01. If the temperature is doubled, what happens to K (assuming that ΔG° is independent of temperature)?

a) K stays the same b) new K=0.0001 c) new K= 0.1 d) new K= (1/100)*e⁻²

6) Properties of Equilibrium Constants:

Consider the following reactions $A + 2B \iff C$

Multiply reaction coefficients by n $2A + 4B \leftrightarrow 2C$

Reverse reaction

 $C \leftrightarrow A + 2B$

Add two reactions

1)	A+B \leftrightarrow C	ΔG_1
2)	$B+C \leftrightarrow D$	ΔG_2
3)	$A+2B \leftrightarrow D$	ΔG_3

Concept

From a chemical handbook you find the equilibrium constants that give the concentrations of Iodine vapor above water and oil:

 $\begin{array}{ll} I_2(water) \leftrightarrow I_2(g) & K_{water} \\ I_2(oil) \leftrightarrow & I_2(g) & K_{oil} \\ \end{array}$ But you want the equilibrium constant for the partitioning of I₂ between water and oil $I_2(water) \leftrightarrow I_2(oil) & K \end{array}$

You can obtain it as:

a) $K = K_{water} + K_{oil}$ b) $K = K_{water} K_{oil}$ c) $K = K_{water} / K_{oil}$ d) $K = K_{oil} / K_{water}$

7) Reaction Quotient

When the mass action expression is not equal to K, its value is denoted Q.

$$aA + bB \rightarrow cC + dD$$

concept Consider the reaction: $N_2+3H_2 \leftrightarrow 2NH_3$ The equilibrium constant at 400°C is K=0.5. Suppose we make a mixture with the following concentrations: $[NH_3] = 1.0M, [N_2] = 1.0M, [H_2] = 1.0M$

In which direction will the reaction go? a) $N_2+3H_2 \rightarrow 2NH_3$ b) $N_2+3H_2 \leftarrow 2NH_3$

8) Heterogenous Equilibrium (a reaction involving more than one phase)

 $C(s) + CO_2(g) \iff 2CO(g)$

Concept Test

Consider the equilibrium expression for the following reaction: $CaCO_3(s) \leftrightarrow CaO(s) + CO_2(g)$

Which of the following is true:

- a) The ratio of CaO(s) to $CaCO_3(s)$ will be the same in all samples of this solid.
- b) The vapor pressure of CO₂(g) above a mixture of CaCO₃(s)/CaO(s) is independent of the relative amount of these two solids.
- c) You need both CaO(s) to $CaCO_3(s)$ to produce $CO_2(g)$.