Lecture Notes D: Demo on Combustion Processes

In this demo, we will consider the combustion of the following gases: hydrogen (H₂), methane (CH₄), and propane (C₃H₈). The amount of heat released by the combustion can be calculated as follows.

Concept

Assume the balloons all have the same size (volume). Which contains the most molecules:

(b) methane (CH₄) (c) propane (C_3H_8) (d) they contain the same # molecules (a) hydrogen (H₂)

Which weighs more, a liter of dry air or a liter of wet air?

(a) wet air

(b) dry air

(c) they weigh the same

	MW (amu)	$\Delta H_{f}^{o}(kJ/mol)$
hydrogen (H ₂)	2.016	0
methane (CH ₄)	16.043	-74.81
propane (C ₃ H ₈)	44.096	-103.85
$H_2O(g)$	18.01	-241.82
$CO_2(g)$	44.01	-393.51kJ/mol

Consider ΔH for the combustion reactions,

$$\begin{array}{lll} H_{2 \, (g)} \, + \, \, {}^{1}\!\!/_{2} \, O_{2 \, (g)} \, \boldsymbol{\rightarrow} \, H_{2} O_{(g)} & \Delta H = \, \Delta H^{o}_{\,\, f}(\,\, H_{2} O_{(g)}\,) \, = \, \, -241.82 k J/mol \\ CH_{4 \, (g)} \, + \, 2 \, O_{2 \, (g)} \, \boldsymbol{\rightarrow} \, CO_{2 \, (g)} \, + \, 2 \, H_{2} O_{(g)} \, \, \Delta H = \, 2 \, \Delta H^{o}_{\,\, f}(\,\, H_{2} O_{(g)}) \, + \, \Delta H^{o}_{\,\, f}(\, CO_{2 \, (g)}) \, - \, \Delta H^{o}_{\,\, f}(\, CH_{4 \, (g)}) \\ & = \, 2 \, (-241.82) \, + \, (-393.51) \, - \, (-74.81) \, = \, -802.34 \, \, k J/mol \\ C_{3} H_{8 \, (g)} \, + \, 5 \, O_{2 \, (g)} \, \boldsymbol{\rightarrow} \, 3 \, CO_{2 \, (g)} \, + \, 4 \, H_{2} O_{(g)} \, \, \Delta H \, = \, 4 \, \Delta H^{o}_{\,\, f}(\,\, H_{2} O_{(g)}) \, + \, 3 \, \Delta H^{o}_{\,\, f}(\, CO_{2 \, (g)}) \, - \, \Delta H^{o}_{\,\, f}(\, C_{3} H_{8 \, (g)}) \\ & = \, 4 \, (-241.82) \, + \, 3 \, (-393.51) \, - \, (-103.85) \, = \, -2044 \, \, k J/mol \end{array}$$

Concept

Which balloon will give off the most heat when exploded

(a) hydrogen (H₂)

(b) methane (CH₄) (c) propane (C_3H_8)