Lecture Notes C: Thermodynamics I (cont)

Problem

How big would an asteroid have to be to evaporate the photic zone of Earth's oceans. The photic zone is the first 200 m of the ocean, and is the depth which gets sufficient sunlight to support photosynthetic life.
Typical speed of an asteroid $=20 \mathrm{~km} / \mathrm{s}$
Surface area of water on the earth $=361.059 \times 10^{6} \mathrm{~km}^{2}$

1) Standard states

Sea level acts as a "standard state"

Chemical Standard States:
gas: 1 atm and $25^{\circ} \mathrm{C}$.
substance in aqueous solution: 1 M concentration
element or compound: most stable form at 1 atm and $25^{\circ} \mathrm{C}\left(\mathrm{O}_{2}, \mathrm{H}_{2}\right.$, graphite (C) etc.)

2) Heats of formation (or Enthalpy's of formation)

Enthalpy change associated with creating one mole of a chemical substance from the elements in their standard states,

$$
\begin{aligned}
& \mathrm{H}_{2}(\mathrm{~g})+\mathrm{O}_{2}(\mathrm{~g}) \rightarrow \mathrm{H}_{2} \mathrm{O}(\mathrm{l}) \quad \Delta \mathrm{H}^{\mathrm{o}}=-285.83 \mathrm{~kJ} \\
& \Delta \mathrm{H}_{\mathrm{f}}^{\mathrm{o}}\left(\mathrm{H}_{2} \mathrm{O}(\mathrm{l})\right)=-285.83 \mathrm{~kJ} / \mathrm{mole}
\end{aligned}
$$

Problem

The heat of formation of $\mathrm{FeCO}_{3}(\mathrm{~s})$ is $-740.57 \mathrm{~kJ} / \mathrm{mole}$. Write the corresponding reaction and give its reaction enthalpy.

3) Calculating reaction enthalpies from heats of formation.

Elements in standard states

For a general reaction: $\mathrm{aA}+\mathrm{bB} \rightarrow \mathrm{cC}+\mathrm{dD}$

Problem

Using the data in the appendix of the textbook, calculate the enthalpy of combustion for methanol vapor $\left(\mathrm{CH}_{3} \mathrm{OH}(\mathrm{g})\right)$. Assume the combustion produces $\mathrm{CO}_{2}(\mathrm{~g})$ and $\mathrm{H}_{2} \mathrm{O}(\mathrm{g})$.
$\Delta \mathrm{H}_{\mathrm{f}}{ }^{\mathrm{o}}\left(\mathrm{CH}_{3} \mathrm{OH}(\mathrm{g})\right)=-200.66 \mathrm{~kJ} / \mathrm{mol} ; \Delta \mathrm{H}_{\mathrm{f}}{ }^{\circ}\left(\mathrm{CO}_{2}(\mathrm{~g})\right)=-393.51 \mathrm{~kJ} / \mathrm{mol} ; \Delta \mathrm{H}_{\mathrm{f}}{ }^{\circ}\left(\mathrm{H}_{2} \mathrm{O}(\mathrm{g})\right)=-241.82 \mathrm{~kJ} / \mathrm{mol}$

Concept

Which of the following is correct?
a) $\Delta \mathrm{H}_{\mathrm{f}}{ }^{\mathrm{o}}\left(\mathrm{CS}_{2}(\mathrm{l})\right)=89.70 \mathrm{~kJ} / \mathrm{mol} ; \quad \Delta \mathrm{H}_{\mathrm{f}}{ }^{\mathrm{o}}\left(\mathrm{CS}_{2}(\mathrm{~g})\right)=117.36 \mathrm{~kJ} / \mathrm{mol}$
b) $\Delta \mathrm{H}_{\mathrm{f}}{ }^{\mathrm{o}}\left(\mathrm{CS}_{2}(\mathrm{l})\right)=117.36 \mathrm{~kJ} / \mathrm{mol} ; \quad \Delta \mathrm{H}_{\mathrm{f}}{ }^{\mathrm{o}}\left(\mathrm{CS}_{2}(\mathrm{~g})\right)=89.70 \mathrm{~kJ} / \mathrm{mol}$

Concept

State whether each of the following is obviously incorrect:

1) $\Delta \mathrm{H}_{\mathrm{f}}{ }^{0}\left(\mathrm{~N}_{2}(\mathrm{~g})\right.$ at $\left.25^{\circ} \mathrm{C}\right)=-100.0 \mathrm{~kJ} / \mathrm{mole}$
a) obviously incorrect
b) could be ok
2) $\Delta \mathrm{H}_{\mathrm{f}}{ }^{\mathrm{o}}\left(\mathrm{C}_{2} \mathrm{H}_{4}(\mathrm{~g})\right.$ at $\left.25^{\circ} \mathrm{C}\right)=52.26 \mathrm{~kJ} / \mathrm{mole}$
a) obviously incorrect
b) could be ok
3) $\Delta \mathrm{H}_{\mathrm{f}}{ }^{\mathrm{o}}\left(\mathrm{Si}(\mathrm{g})\right.$ at $\left.25^{\circ} \mathrm{C}\right)=455.6 \mathrm{~kJ} / \mathrm{mole}$
a) obviously incorrect
b) could be ok
4) $\Delta \mathrm{H}_{\mathrm{f}}{ }^{\circ}\left(\mathrm{As}(\mathrm{g})\right.$ at $\left.25^{\circ} \mathrm{C}\right)=-302.5 \mathrm{~kJ} / \mathrm{mole}$
a) obviously incorrect
b) could be ok

Problem

Hydrogen (perhaps produced by solar energy) would be an ideal alternative to fossil fuels, since it does not produce pollutants or green house gases when burned. The problem is that it is a gas, and hard to store and transport. What volume of hydrogen gas at 1.00 atm and $25^{\circ} \mathrm{C}$ would be required to produce an amount of energy equivalent to that produced by the combustion of a gallon of octane $\left(\mathrm{C}_{8} \mathrm{H}_{18}\right)$ to form $\mathrm{CO}_{2}(\mathrm{~g})$ and $\mathrm{H}_{2} \mathrm{O}(\mathrm{l})$?
$\Delta \mathrm{H}_{\mathrm{f}}{ }^{\mathrm{o}}\left(\mathrm{C}_{8} \mathrm{H}_{18}\right)=-208.6 \mathrm{~kJ} / \mathrm{mol} \quad \Delta \mathrm{H}_{\mathrm{f}}{ }^{\mathrm{o}}\left(\mathrm{CO}_{2}(\mathrm{~g})\right)=-393.51 \mathrm{~kJ} / \mathrm{mol} \Delta \mathrm{H}_{\mathrm{f}}{ }^{\mathrm{o}}\left(\mathrm{H}_{2} \mathrm{O}(\mathrm{l})\right)=-285.83 \mathrm{~kJ} / \mathrm{mol}$
Density of $\mathrm{C}_{8} \mathrm{H}_{18}$ at $25^{\circ} \mathrm{C}$ is $0.7025 \mathrm{~g} / \mathrm{m}$

Problem

The Bombardier Beetle defends itself by spraying nearly boiling water on its predators. It has two glands on the tip of its abdomen. Each gland has two compartments. The inner compartment holds an aqueous solution of hydroquinone and hydrogen peroxide. The outer compartment holds a mixture of enzymes that catalyze the following reaction:

$$
\underset{\text { hydroquinone }}{\mathrm{C}_{6} \mathrm{H}_{4}(\mathrm{OH})_{2}(\mathrm{aq})}+\underset{\text { hydrogen peroxide }}{\mathrm{H}_{2} \mathrm{O}_{2}(\mathrm{aq})} \rightarrow \underset{\text { quinone }}{\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{O}_{2}(\mathrm{aq})}+2 \mathrm{H}_{2} \mathrm{O}(\mathrm{l})
$$

When threatened, the beetle squeezes some fluid from the inner compartment into the outer compartment, and sprays the mixture (which is near its boiling point) onto the predator.
The thermodynamic properties are:
$\Delta \mathrm{H}_{\mathrm{f}}^{\mathrm{o}}\left(\mathrm{H}_{2} \mathrm{O}_{(\mathrm{l})}\right)=-285.83 \mathrm{~kJ} / \mathrm{mol} ; \Delta \mathrm{H}_{\mathrm{f}}^{\mathrm{o}}\left(\mathrm{H}_{2} \mathrm{O}_{2(\mathrm{aq})}\right)=-191.17 \mathrm{~kJ} / \mathrm{mol}$
$\mathrm{C}_{6} \mathrm{H}_{4}(\mathrm{OH})_{2}(\mathrm{aq}) \cdots \mathrm{C}_{6} \mathrm{H}_{4} \mathrm{O}_{2}(\mathrm{aq})+\mathrm{H}_{2}(\mathrm{~g}) \quad \Delta \mathrm{H}=177 \mathrm{~kJ}$
Suppose the concentration of the hydroquinone solution is 2.0 M and the concentration of the $\mathrm{H}_{2} \mathrm{O}_{2}$ solution is 2.0 M . What is the temperature of the solution after mixing 1 ml of the hydroquinone solution with 1 ml of the $\mathrm{H}_{2} \mathrm{O}_{2}$ solution?

Concept

Suppose the concentration of $\mathrm{H}_{2} \mathrm{O}_{2}$ is 2.5 M , and that of hydroquinone is 2.0 M . What happens to the final temperature of the solution?
a) same as above
b) higher than above
c) lower than above

Suppose the bug mixes 0.5 ml of the hydroquinone solution with 0.5 ml of $\mathrm{H}_{2} \mathrm{O}_{2}$. What happens to the final temperature of the solution?
a) same as above
b) higher than above
c) lower than above

4) Bond enthalpy

$$
\begin{array}{ll}
\mathrm{CH}_{4(\mathrm{~g})} & --->\mathrm{CH}_{3(\mathrm{~g})}+\mathrm{H}_{(\mathrm{g})} \\
\mathrm{C}_{2} \mathrm{H}_{6}(\mathrm{~g}) & --->\mathrm{C}_{2} \mathrm{H}_{5(\mathrm{~g})}+\mathrm{H}_{(\mathrm{g})} \\
\mathrm{CHCl}_{3(\mathrm{~g})}-->\mathrm{CCl}_{3(\mathrm{~g})}+\mathrm{H}_{(\mathrm{g})} & \Delta 38 \mathrm{~kJ} \\
\mathrm{CHBr}_{3(\mathrm{~g})}-->\mathrm{CBr}_{3(\mathrm{~g})}+\mathrm{H}_{(\mathrm{g})} & \Delta \mathrm{H}^{\mathrm{o}}=310 \mathrm{~kJ} \\
& \Delta \mathrm{H}^{\mathrm{o}}=377 \mathrm{~kJ}
\end{array}
$$

Average Bond Enthalpies in $\mathrm{kJ} /$ mole (Table 7.3)

	Molar Enthalpy of Atomization	$\mathbf{H}-$	$\mathbf{C}-$	$\mathbf{C}=$	\mathbf{C}	$\mathbf{N}-$	$\mathbf{N}=$	\mathbf{N}	$\mathbf{O}-$
$\mathbf{O}=$									
H	218.0	436	413			391			463
C	716.7	413	348	615	812	292	615	891	351
N	472.2	391	292	615	891	161	418	945	
O	249.2	463	351	728					139
S	278.8	339	259	477					
F	79.0	563	441			270			185
Cl	121.7	432	328			200			203
Br	111.9	366	276						
I	106.8	299	240						

Problem

Estimate $\Delta \mathrm{H}$ for the following reaction, using the bond enthalpy's listed above. Compare this to that obtained from the table at the end of the book.

$$
\mathrm{H}_{2} \mathrm{CCH}_{2}+\mathrm{H}_{2}-->\mathrm{H}_{3} \mathrm{CCH}_{3}
$$

5) Molar Enthalpy of Atomization

(element in standard state) \rightarrow (single, gas-phase atom) $\Delta \mathrm{H}$

Gas-phase atoms provides a convenient reference when using bond enthalpies to estimate the heat of formation of a molecule.
Problem
Estimate the heat of formation of $\mathrm{H}_{2} \mathrm{CCH}_{2}$ using the atomization energies and bond enthalpy's in the table.

6) Clarification: Sign of ΔH and conventions for $\Delta H_{f}{ }^{\circ}$ vs. bond enthalpies

7) Enthalpies of Formation versus Bond Enthalpies

$\Delta \mathrm{H}_{\mathrm{f}}{ }^{\mathrm{o}}(\mathrm{kJ} / \mathrm{mol})$
$2 \mathrm{CO}_{(\mathrm{g})} \quad+\quad \mathrm{O}_{2(\mathrm{~g})}$
-110.52
$2 \mathrm{CO}_{2}(\mathrm{~g})$
-393.51
Molar Enthalpy of Vaporization: $\mathrm{C}=716.7 \mathrm{~kJ}, \mathrm{O}=249.2 \mathrm{~kJ}$
Bond Enthalpies: CO triple bond: 1080kJ $\quad \mathrm{O}=\mathrm{O}: 498 \mathrm{~kJ}$
$\mathrm{C}=\mathrm{O}: 728 \mathrm{~kJ}$ from table (really 804 in CO_{2})

