Lecture Notes BB: Chemical Kinetics I

Distributed on Monday, April 10, 2000

1. Definition of the rate

reaction rate = (change in concentration)/ (change in time)

rate =
$$-\frac{d[A]}{dt}$$
 = $-\frac{d[B]}{dt}$ = $\frac{d[C]}{dt}$ = $\frac{d[D]}{dt}$

units for the rate are (concentration)/time = (moles/liter)/sec = M/s

Consider the reaction:

$$2 \text{ NO}_2(g) + F_2(g) \longrightarrow 2 \text{ NO}_2F(g)$$

Which of the following is correct?

a) rate
$$= -\frac{1}{2} \frac{d[NO_2]}{dt} = -\frac{d[F_2]}{dt} = \frac{1}{2} \frac{d[NO_2F]}{dt}$$
 b) rate $= -\frac{d[NO_2]}{dt} = -\frac{1}{2} \frac{d[F_2]}{dt} = \frac{d[NO_2F]}{dt}$

b) rate =
$$-\frac{d[NO_2]}{dt} = -\frac{1}{2}\frac{d[F_2]}{dt} = \frac{d[NO_2F]}{dt}$$

In general:

2. Initial rate

Consider the reaction: $2NO_2(g) ---> 2NO(g) + O_2(g)$

The following table shows the concentration of the above species for an experiment that starts with $0.01M\ NO_2$.

time (s)	$[NO_2]$	[NO]	$[O_2]$
0	0.0100	0	0
100	0.0065	0.0035	0.0018
200	0.0048	0.0052	0.0026
300	0.0038	0.0062	0.0031
400	0.0031	0.0069	0.0035

What is the rate 300-400 seconds into the reaction?

3. Definition of the order of a reaction

$$A + B - C + D$$

When you change the concentration of a reactant, you change the rate of the reaction according to:

rate =
$$k [A]^m [B]^n$$

The reaction is mth order in [A] and nth order in [B]. The reaction has a total order of (m+n)

Another experiment is performed on the reaction from page 2: $2NO_2(g) ---> 2NO(g) + O_2(g)$ The data is shown below. What is the order of the reaction in [NO₂]?

time (s)	$[NO_2]$	[NO]	$[O_2]$
0	$0.00\overline{50}$	0	0
100	0.0041	0.00087	0.0017

Chemistry 09-106: Modern Chemistry II	
---------------------------------------	--

Carnegie Mellon University

Concept test: If changing the concentration of a reactant, [A], has no effect on the rate of a reaction, what is the order of the reaction in [A].

- a) -1
- b) 0
- c) 1/2
- d) 1

Consider the following reaction: $CO(g) + NO_2(g) \longrightarrow CO_2(g) + NO(g)$

You do five experiments, measuring the initial rate for a variety of initial concentrations.

initial concentrations	[CO](M)	$[NO_2](M)$	Initial rate (M/hr)
a	5.1×10^{-4}	3.5×10^{-5}	3.4×10^{-8}
b	5.1×10^{-4}	7.0×10^{-5}	6.8×10^{-8}
c	5.1×10^{-4}	1.8×10^{-5}	$1.7x10^{-8}$
d	10.2×10^{-4}	3.5×10^{-5}	6.8×10^{-8}
e	15.3×10^{-4}	3.5×10^{-5}	10.2×10^{-8}

a) Derive the rate expression.

b) What is the order of the reaction?

c) Calculate the rate constant

d) Calculate the rate for the following conditions

- initial concentrations [CO](M) $1.4x10^{-4}$
- $[NO_2](M)$ 2.1x10⁻⁵

Initial rate (M/hr)

Concept:

For the reaction A(g) + B(g) --> AB(g), the rate is 0.20 M/s when [A] = [B] = 1.0 M. The reaction is first order in B and second order in A. What is the rate when [A] = 2.0M and [B] = 3.0M.

- a) 1.2M/s
- b) 2.4 M/s
- c) 3.6M/s

4. Integrated rate laws:

First order reaction:

 $N_2O_4 --> 2 NO_2$

Concept test: The half life for the radioactive decay of 32 P is 14 days. You start with 1.000g of 32 P. How many grams are left after 3*14 = 42 days.

- a) 0.100g
- b) 0.125g
- c) 0.25g
- d) 0.333g

Second order reaction:

$$2 \text{ NO}_2 --> 2 \text{ NO} + \text{O}_2$$

Chemistry 09-106: Modern Chemistry II	Carnegie Mellon University
For the simple decomposition reaction: AB(g)> A to reach one-third of its initial concentration of 1.5M	$(g) + B(g)$, the rate = $k[AB]^2$. If it takes 5 minutes for [AB], what is k (assume you can ignore the reverse reaction)?
	, (
: Lecture Notes BB: Chemical Kinetics I	Distributed on Monday, April 10, 2000 8 of