Lecture Notes BB: Chemical Kinetics I

Distributed on Monday, April 10, 2000

1. Definition of the rate
reaction rate $=($ change in concentration $) /($ change in time $)$
A+B --> C+D
rate $=-\frac{\mathrm{d}[\mathrm{A}]}{\mathrm{dt}}=-\frac{\mathrm{d}[\mathrm{B}]}{\mathrm{dt}}=\frac{\mathrm{d}[\mathrm{C}]}{\mathrm{dt}}=\frac{\mathrm{d}[\mathrm{D}]}{\mathrm{dt}}$
units for the rate are (concentration) $/$ time $=($ moles $/$ liter $) / \mathrm{sec}=\mathrm{M} / \mathrm{s}$
Consider the reaction:
$2 \mathrm{NO}_{2}(\mathrm{~g})+\mathrm{F}_{2}(\mathrm{~g})--->2 \mathrm{NO}_{2} \mathrm{~F}(\mathrm{~g})$
Which of the following is correct?
a) rate $=-\frac{1}{2} \frac{\mathrm{~d}\left[\mathrm{NO}_{2}\right]}{\mathrm{dt}}=-\frac{\mathrm{d}\left[\mathrm{F}_{2}\right]}{\mathrm{dt}}=\frac{1}{2} \frac{\mathrm{~d}\left[\mathrm{NO}_{2} \mathrm{~F}\right]}{\mathrm{dt}} \quad$ b) rate $=-\frac{\mathrm{d}\left[\mathrm{NO}_{2}\right]}{\mathrm{dt}}=-\frac{1}{2} \frac{\mathrm{~d}\left[\mathrm{~F}_{2}\right]}{\mathrm{dt}}=\frac{\mathrm{d}\left[\mathrm{NO}_{2} \mathrm{~F}\right]}{\mathrm{dt}}$

In general:
2. Initial rate

Consider the reaction: $\quad 2 \mathrm{NO}_{2}(\mathrm{~g})$---> $2 \mathrm{NO}(\mathrm{g})+\mathrm{O}_{2}(\mathrm{~g})$
The following table shows the concentration of the above species for an experiment that starts with $0.01 \mathrm{M} \mathrm{NO}_{2}$.

time (s)	$\left[\mathrm{NO}_{2}\right]$	$[\mathrm{NO}]$	$\left[\mathrm{O}_{2}\right]$
0	0.0100	0	0
100	0.0065	0.0035	0.0018
200	0.0048	0.0052	0.0026
300	0.0038	0.0062	0.0031
400	0.0031	0.0069	0.0035

What is the initial rate of the reaction?

What is the rate $300-400$ seconds into the reaction?
3. Definition of the order of a reaction

$$
A+B-->C+D
$$

When you change the concentration of a reactant, you change the rate of the reaction according to:

$$
\text { rate }=\mathrm{k}[\mathrm{~A}]^{\mathrm{m}}[\mathrm{~B}]^{\mathrm{n}}
$$

The reaction is $m^{\text {th }}$ order in [A] and $\mathrm{n}^{\text {th }}$ order in [B]. The reaction has a total order of $(\mathrm{m}+\mathrm{n})$
Another experiment is performed on the reaction from page 2: $\quad 2 \mathrm{NO}_{2}(\mathrm{~g})--->2 \mathrm{NO}(\mathrm{g})+\mathrm{O}_{2}(\mathrm{~g})$ The data is shown below. What is the order of the reaction in $\left[\mathrm{NO}_{2}\right]$?

time (s)	$\left[\mathrm{NO}_{2}\right]$	$[\mathrm{NO}]$	$\left[\mathrm{O}_{2}\right]$
0	0.0050	0	0
100	0.0041	0.00087	0.0017

Concept test: If changing the concentration of a reactant, [A], has no effect on the rate of a reaction, what is the order of the reaction in [A].
a) -1
b) 0
c) $1 / 2$
d) 1

Consider the following reaction: $\quad \mathrm{CO}(\mathrm{g})+\mathrm{NO}_{2}(\mathrm{~g})--->\mathrm{CO}_{2}(\mathrm{~g})+\mathrm{NO}(\mathrm{g})$
You do five experiments, measuring the initial rate for a variety of initial concentrations.

initial concentrations	$[\mathrm{CO}](\mathrm{M})$	$\left[\mathrm{NO}_{2}\right](\mathrm{M})$	Initial rate $(\mathrm{M} / \mathrm{hr})$
a	5.1×10^{-4}	3.5×10^{-5}	3.4×10^{-8}
b	5.1×10^{-4}	7.0×10^{-5}	6.8×10^{-8}
c	5.1×10^{-4}	1.8×10^{-5}	1.7×10^{-8}
d	10.2×10^{-4}	3.5×10^{-5}	6.8×10^{-8}
e	15.3×10^{-4}	3.5×10^{-5}	10.2×10^{-8}

a) Derive the rate expression.
b) What is the order of the reaction?
c) Calculate the rate constant
d) Calculate the rate for the following conditions
initial concentrations $[\mathrm{CO}](\mathrm{M})$
$\left[\mathrm{NO}_{2}\right](\mathrm{M})$
Initial rate (M/hr)
1.4×10^{-4}

Concept:
For the reaction $\mathrm{A}(\mathrm{g})+\mathrm{B}(\mathrm{g})-->\mathrm{AB}(\mathrm{g})$, the rate is $0.20 \mathrm{M} / \mathrm{s}$ when $[\mathrm{A}]=[\mathrm{B}]=1.0 \mathrm{M}$. The reaction is first order in B and second order in A . What is the rate when $[\mathrm{A}]=2.0 \mathrm{M}$ and $[\mathrm{B}]=3.0 \mathrm{M}$.
a) $1.2 \mathrm{M} / \mathrm{s}$
b) $2.4 \mathrm{M} / \mathrm{s}$
c) $3.6 \mathrm{M} / \mathrm{s}$
4. Integrated rate laws:

First order reaction: $\quad \mathrm{N}_{2} \mathrm{O}_{4}-->2 \mathrm{NO}_{2}$

Concept test: The half life for the radioactive decay of ${ }^{32} \mathrm{P}$ is 14 days. You start with 1.000 g of ${ }^{32} \mathrm{P}$. How many grams are left after $3^{*} 14=42$ days.
a) 0.100 g
b) 0.125 g
c) 0.25 g
d) 0.333 g

Second order reaction: $\quad 2 \mathrm{NO}_{2}-->2 \mathrm{NO}+\mathrm{O}_{2}$

For the simple decomposition reaction: $\mathrm{AB}(\mathrm{g})-->\mathrm{A}(\mathrm{g})+\mathrm{B}(\mathrm{g})$, the rate $=\mathrm{k}[\mathrm{AB}]^{2}$. If it takes 5 minutes for $[\mathrm{AB}]$ to reach one-third of its initial concentration of 1.5 M , what is k (assume you can ignore the reverse reaction)?

