Lecture Notes B: Thermodynamics I (cont)

1) C_{V} versus C_{P}

Heat transferred if volume is held constant

$$
\mathrm{q}_{\mathrm{V}}=\mathrm{n}_{\mathrm{v}}\left(\mathrm{~T}_{\text {final- }}-\mathrm{T}_{\text {initial }}\right)=\mathrm{n} \mathrm{C}_{\mathrm{V}} \Delta \mathrm{~T}
$$

Heat transferred if pressure is held constant

$$
\mathrm{q}_{\mathrm{P}}=\mathrm{n}_{\mathrm{P}}\left(\mathrm{~T}_{\text {final- }}-\mathrm{T}_{\text {initial }}\right)=\mathrm{nC}_{\mathrm{P}} \Delta \mathrm{~T}
$$

$\mathrm{n}=$ number of moles of the substance being heated $\mathrm{C}=$ molar heat capacity

2) Heat transfer at constant volume: Bomb Calorimeter

If you seal some chemical species in a constant volume "bomb", and measure the heat produced or consumed in a chemical process, you have measured $\Delta \mathrm{E}$.

3) Heat transfer at constant pressure: Definition of enthalpy

If you measure the heat produced or consumed in a chemical process at constant pressure, you have measured $\Delta \mathrm{H}$, where H is the enthalpy.
4) Relation to C_{p} and C_{v}

5) Energy and heat capacities of an ideal gas

$\mathrm{E}=3 / 2 \mathrm{n}$ R T (for a monatomic ideal gas, Ar, Ne, etc., see Section 4.5 between eqs. [4.10] and [4.11])
C_{v}

C_{P}

C_{v} As you heat, all energy goes to the internal motion of molecules,thereby increasing T
C_{p} As you heat, the volume increases (gas is doing work). So your heat is being used both to increase T and to do work.

6) State functions (Why have this Enthalpy thing?)

A state function is uniquely determined by the thermodynamic state of a system ($\mathrm{P}, \mathrm{V}, \mathrm{T}$).
Your altitude above sea level is a state function: it does not matter how you got to Pittsburgh. The amount of gas in your car is not a state function: it depends on how you got here.

$$
\Delta \mathrm{E}=\mathrm{q}+\mathrm{w}
$$

E and H are state functions, q and w are not.
You can't say something "has" a certain amount of heat, but you can say it has a certain amount of energy or enthalpy.

You can extract the energy or enthalpy as either heat or work.
Enthalpy is a great concept, because you typically work at constant pressure. If no work is done, the change in enthalpy is the change in heat for a constant pressure process. This is why the "change in enthalpy" for a chemical reaction is often called the "heat of reaction" (see section 7 of these notes).

From Textbook (page 219) for 1 mole of an monatomic ideal gas

7) Enthalpy of reaction (also called heat of reaction)

Consider burning acetylene: $\quad \mathrm{C}_{2} \mathrm{H}_{2}(\mathrm{~g})+3 / 2 \mathrm{O}_{2}(\mathrm{~g}) \quad \rightarrow \quad \mathrm{CO}_{2}(\mathrm{~g})+\mathrm{H}_{2} \mathrm{O}(\mathrm{l}) \quad \Delta \mathrm{H}=-1301.1 \mathrm{~kJ}$

exothermic:	reactants	\rightarrow products + heat	$\Delta \mathrm{H}$ negative
endothermic:	reactants + heat	\rightarrow products	$\Delta \mathrm{H}$ positive

Problem: Calculate the change in enthalpy when 5.00 grams of acetylene is burned.

Concept

What is $\Delta \mathrm{H}$ for the reaction: $2 \mathrm{CO}_{2}(\mathrm{~g})+2 \mathrm{H}_{2} \mathrm{O}(\mathrm{l}) \rightarrow 2 \mathrm{C}_{2} \mathrm{H}_{2}(\mathrm{~g})+3 \mathrm{O}_{2}(\mathrm{~g})$
(a) $\Delta \mathrm{H}=-2602.2 \mathrm{~kJ}$
(b) $\Delta \mathrm{H}=-1301.1 \mathrm{~kJ}$
(c) $\Delta \mathrm{H}=1301.1 \mathrm{~kJ}$
(d) $\Delta \mathrm{H}=2602.2 \mathrm{~kJ}$

8) Hess's law

$$
\begin{array}{lll}
\mathrm{A}+\mathrm{B} & \rightarrow \mathrm{C} & \Delta \mathrm{H}_{1} \\
\mathrm{C} & \rightarrow \mathrm{D}+\mathrm{E} & \Delta \mathrm{H}_{2} \\
\mathrm{~A}+\mathrm{B} & \rightarrow \mathrm{D}+\mathrm{E} & \Delta \mathrm{H}=\Delta \mathrm{H}_{1}+\Delta \mathrm{H}_{2}
\end{array}
$$

Problem

Two gaseous pollutants that form in auto exhaust are CO and NO. An elegant way to eliminate these is through the reaction:

$$
\mathrm{CO}_{(\mathrm{g})}+\mathrm{NO}_{(\mathrm{g})} \rightarrow \mathrm{CO}_{2(\mathrm{~g})}+1 / 2 \mathrm{~N}_{2(\mathrm{~g})}
$$

Calculate $\Delta \mathrm{H}$ and $\Delta \mathrm{E}$ for the above reaction given the following (all values are for $25^{\circ} \mathrm{C}$),

$$
\begin{array}{lll}
\mathrm{CO}_{(\mathrm{g})}+1 / 2 \mathrm{O}_{2(\mathrm{~g})} & \rightarrow \mathrm{CO}_{2(\mathrm{~g})} & \Delta \mathrm{H}=-283.0 \mathrm{~kJ} \\
\mathrm{~N}_{2(\mathrm{~g})}+\mathrm{O}_{2(\mathrm{~g})} & \rightarrow 2 \mathrm{NO}_{(\mathrm{g})} & \Delta \mathrm{H}=180.6 \mathrm{~kJ}
\end{array}
$$

9) Phase changes

$$
\begin{array}{ll}
\mathrm{H}_{2} \mathrm{O}_{(\mathrm{s})} \rightarrow \mathrm{H}_{2} \mathrm{O}_{(\mathrm{l})} & \left|\Delta \mathrm{H}_{\text {fus }}\right|=6.007 \mathrm{~kJ} \\
\mathrm{H}_{2} \mathrm{O}_{(\mathrm{l})} \rightarrow \mathrm{H}_{2} \mathrm{O}_{(\mathrm{g})} & \left|\Delta \mathrm{H}_{\text {vap }}\right|=40.7 \mathrm{~kJ}
\end{array}
$$

Concept

What are the correct signs for enthalpy's of the above reactions?
a) $\Delta \mathrm{H}_{\text {fus }}=6.007 \mathrm{~kJ}, \Delta \mathrm{H}_{\text {vap }}=40.7 \mathrm{~kJ}$
b) $\Delta \mathrm{H}_{\text {fus }}=6.007 \mathrm{~kJ}, \Delta \mathrm{H}_{\text {vap }}=-40.7 \mathrm{~kJ}$
c) $\Delta \mathrm{H}_{\text {fus }}=-6.007 \mathrm{~kJ}, \Delta \mathrm{H}_{\text {vap }}=40.7 \mathrm{~kJ}$
d) $\Delta \mathrm{H}_{\text {fus }}=-6.007 \mathrm{~kJ}, \Delta \mathrm{H}_{\text {vap }}=-40.7 \mathrm{~kJ}$

Problem

How many grams of ice (at $0^{\circ} \mathrm{C}$) is needed to cool 1 liter of water from $25^{\circ} \mathrm{C}$ to $0^{\circ} \mathrm{C}$?

