Laboratory 3

Thursday, March 22, 2001

Equipment

The following acids and bases, all of which can be bought at a hardware store:
$0.1 \mathrm{M} \mathrm{H}_{3} \mathrm{PO}_{4}$ (phosporic acid) $\quad 0.1 \mathrm{M} \mathrm{HCl}$ (Muriatic acid) $\quad 0.1 \mathrm{M} \mathrm{NaOH}$ (Lye, Drano)
$0.1 \mathrm{M} \mathrm{Na}_{2} \mathrm{CO}_{3}$ (washing soda) $\quad 0.1 \mathrm{M} \mathrm{NaHCO}_{3}$ (baking soda) $\quad 0.1 \mathrm{M} \mathrm{NaHSO}_{4}$ (Lime away)
$0.1 \mathrm{M} \mathrm{Na}_{3} \mathrm{PO}_{4}$ (T.S.P. scouring powder) $\quad 0.1 \mathrm{M} \mathrm{NH}_{3}$ (ammonia) 0.1 M HAc (vinegar)
Plus:
plastic pipettes capable of delivering $1-3 \mathrm{ml}$ of solution with an accuracy of about 5-10\%
Tray with wells to hold solution (number of wells is about 5×10, the diagram below shows a 5×6 array)

Universal indicator

Goal

To make solutions with the following pH 's, such that they have the indicated colors when universal indicator is added.

$$
\mathrm{pH}=4 \text { (red) } \mathrm{pH}=6 \text { (yellow) } \mathrm{pH}=7 \text { (green) } \mathrm{pH}=9 \text { (blue) } \mathrm{pH}=10 \text { (indigo) }
$$

You should use these solutions to draw a pattern in the wells of the tray. Make sure you use all 5 colors.
Also, try to make each pH in more than one way (i.e. using different starting ingredients).

TABLE 10.2
Ionization Constants of Acids at $25^{\circ} \mathrm{C}$

Acid	HA	\mathbf{A}^{-}	K_{0}	$\mathrm{p} K_{0}$
Hydriodic	HII	I^{-}	-10^{11}	~-11
Hydrobromic	HBr	Br^{-}	$\sim 10^{9}$	~-9
Perchloric	HClO_{4}	ClO_{4}^{-}	$\sim 10^{7}$	~-7
Hydrochloric	HCl	Cl^{-}	$\sim 10^{7}$	$\sim \sim 7$
Chloric	HClO_{3}	ClO_{3}^{-}	$\sim 10^{3}$	~-3
Sulfuric (1)	$\mathrm{H}_{2} \mathrm{SO}_{4}$	HSO_{4}^{-}	$\sim 10^{2}$	~-2
Nitric	HNO_{3}	NO_{3}^{-}	~ 20	~-1.3
Hydronium ion	$\mathrm{H}_{3} \mathrm{O}^{+}$	$\mathrm{H}_{2} \mathrm{O}$	1	0.0
Iodic	HIO_{3}	IO_{3}^{-}	1.6×10^{-1}	0.80
Oxalic (1)	$\mathrm{H}_{2} \mathrm{C}_{2} \mathrm{O}_{4}$	$\mathrm{HC}_{2} \mathrm{O}_{4}^{-}$	5.9×10^{-2}	1.23
Sulfurous (1)	$\mathrm{H}_{3} \mathrm{SO}_{3}$	HSO_{3}^{-}	1.54×10^{-2}	1.81
Sulfuric (2)	HSO_{4}^{-}	$\mathrm{SO}_{4}{ }^{-}$	1.2×10^{-2}	1.92
Chlorous	HClO_{2}	ClO_{2}^{-}	1.1×10^{-2}	1.96
Phosphoric (1)	$\mathrm{H}_{3} \mathrm{PO}_{4}$	$\mathrm{H}_{2} \mathrm{PO}_{4}^{-}$	7.52×10^{-3}	2.12
Arsenic (1)	$\mathrm{H}_{3} \mathrm{AsO}_{4}$	$\mathrm{H}_{2} \mathrm{AsO}_{4}^{-}$	5.0×10^{-3}	2.30
Chloroaceric	$\mathrm{CH}_{2} \mathrm{ClCOOH}$	$\mathrm{CH}_{2} \mathrm{ClCOO}{ }^{-}$	1.4×10^{-3}	2.85
Hydroftuoric	HF	F^{-}	6.6×10^{-4}	3.18
Nitrous	HNO_{2}	NO_{2}^{-}	4.6×10^{-4}	3.34
Formic	HCOOH	HCOO^{-}	1.77×10^{-4}	3.75
Benzoic	$\mathrm{C}_{4} \mathrm{H}_{5} \mathrm{COOH}$	$\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{COO}^{-}$	6.46×10^{-5}	4.19
Oralic (2)	$\mathrm{HC}_{2} \mathrm{O}_{4}^{-}$	$\mathrm{C}_{2} \mathrm{O}_{4}{ }^{-}$	6.4×10^{-5}	4.19
Hydrazoic	HN_{3}	N_{3}^{-}	1.9×10^{-5}	4.72
Acetic	$\mathrm{CH}_{3} \mathrm{COOH}$	$\mathrm{CH}_{3} \mathrm{COO}^{-}$	1.76×10^{-5}	4.75
Propionic	$\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{COOH}$	$\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{COO}^{-}$	1.34×10^{-5}	4.87
Pyridinium ion	$\mathrm{HC}_{5} \mathrm{H}_{5} \mathrm{~N}^{+}$	$\mathrm{C}_{3} \mathrm{H}_{5} \mathrm{~N}$	5.6×10^{-6}	5.25
Carbonic (1)	$\mathrm{H}_{2} \mathrm{CO}_{3}$	HCO_{3}^{-}	4.3×10^{-7}	6.37
Sulfurous (2)	HSO_{3}^{-}	SO^{2-}	1.02×10^{-7}	6.91
Arsenic (2)	$\mathrm{H}_{2} \mathrm{AssO}^{-}$	$\mathrm{HASO}_{4}{ }^{-}$	9.3×10^{-8}	7.03
Hydrosalfuric	$\mathrm{H}_{2} \mathrm{~S}$	HS^{-}	9.1×10^{-8}	7.04
Phosphoric (2)	$\mathrm{H}_{2} \mathrm{PO}_{4}^{-}$	HPO^{-}	6.23×10^{-8}	7.21
Hypochlorous	HCl	ClO^{-}	3.0×10^{-8}	7.53
Hydrocyanic	HCN	CN^{-}	6.17×10^{-10}	9.21
Ammanium ion	NH_{4}^{+}	NH_{3}	5.6×10^{-10}	9.25
Carbonic (2)	HCO_{3}^{-}	CO^{-}	4.8×10^{-11}	10.32
Arsenic (3)	$\mathrm{HAsO}_{4}{ }^{-}$	AsO_{4}^{3-}	3.0×10^{-12}	11.53
Hydrogen peroxide	$\mathrm{H}_{2} \mathrm{O}_{2}$	HO_{2}^{-}	2.4×10^{-12}	11.62
Phosphoric (3)	HPO_{4}^{2-}	PO_{4}^{3-}	2.2×10^{-13}	12.67
Water	$\mathrm{H}_{2} \mathrm{O}$	OH^{-}	1.0×10^{-14}	14.00

