Laboratory 3

Thursday, March 22, 2001

Equipment

The following acids and bases, all of which	can be bought at a hard	iware store:	
0.1M H ₃ PO ₄ (phosporic acid)	0.1M HCl (Muriatic a	cid) 0.1M NaOH (Lye, Dr	ano)
0.1M Na ₂ CO ₃ (washing soda)	0.1M NaHCO ₃ (bakin	g soda) 0.1M NaHSO ₄ (Lime	away)
0.1M Na ₃ PO ₄ (T.S.P. scouring powd	er) $0.1M NH_3$ (am	monia) 0.1M HAc (vinegar)	

Plus:

plastic pipettes capable of delivering 1-3 ml of solution with an accuracy of about 5-10% Tray with wells to hold solution (number of wells is about 5 x 10, the diagram below shows a 5x6 array)

Universal indicator

Goal

To make solutions with the following pH's, such that they have the indicated colors when universal indicator is added.

$$pH = 4 \text{ (red)}$$
 $pH = 6 \text{ (yellow)}$ $pH = 7 \text{ (green)}$ $pH = 9 \text{ (blue)}$ $pH = 10 \text{ (indigo)}$

You should use these solutions to draw a pattern in the wells of the tray. Make sure you use all 5 colors.

Also, try to make each pH in more than one way (i.e. using different starting ingredients).

Laboratory 3 Thursday, March 23, 2000 Page 1 of 1

TABLE 10.2

Ionization Constants of Acids at 25°C

Acid	НА	A-	K _a	pK _e
Hydriodic	н	I-	~1011	~-11
Hydrobromic	HBr	Br-	~109	~-9
Perchloric	HCIO ₄	CIOT	~107	~-7
Hydrochloric	HCl	CI-	~107	~-7
Chloric	HClO ₃	CIO ₃	~103	~-3
Sulfuric (1)	H ₂ SO ₄	HSO ₄	~102	~-2
Nitric	HNO ₃	NO ₃	~20	~-1.3
Hydronium ion	H ₃ O ⁺	H ₂ O	1	0.0
Iodic	HIO ₃	103	1.6×10^{-1}	0.80
Oxalic (1)	H ₂ C ₂ O ₄	HC ₂ O ₄	5.9×10^{-2}	1.23
Sulfurous (1)	H ₂ SO ₃	HSO ₃	1.54×10^{-2}	1.81
Sulfuric (2)	HSO ₄	soi-	1.2×10^{-2}	1.92
Chlorous	HClO ₂	CIO ₂	1.1×10^{-2}	1.96
Phosphoric (1)	H ₃ PO ₄	H ₂ PO ₄	7.52×10^{-3}	2.12
Arsenic (1)	H ₃ AsO ₄	H ₂ AsO ₄	5.0×10^{-3}	2.30
Chloroacetic	CH₂ClCOOH	CH ₂ ClCOO-	1.4×10^{-3}	2.85
Hydrofluoric	HF	F-	6.6 × 10 ⁻⁴	3.18
Nitrous	HNO ₂	NO ₂	4.6×10^{-4}	3.34
Formic	HCOOH	HCOO-	1.77×10^{-4}	3.75
Benzoic	C4H4COOH	C6H5COO-	6.46×10^{-5}	4.19
Oralic (2)	HC ₂ O ₄	C2O4-	6.4×10^{-5}	4.19
Hydrazoic	HIN ₃	N ₃	1.9×10^{-5}	4.72
Acetic	CH3COOH	CH3COO-	1.76×10^{-5}	4.75
Propionic	CH ₂ CH ₂ COOH	CH ₂ CH ₂ COO ⁻	1.34×10^{-5}	4.87
Pyridinium ion	HC ₅ H ₅ N ⁺	C ₅ H ₅ N	5.6×10^{-6}	5.25
Carbonic (1)	H ₂ CO ₃	HCO ₃	4.3×10^{-7}	6.37
Sulfurous (2)	HSO ₅	so}-	1.02×10^{-7}	6.91
Arsenic (2)	H ₂ A ₅ O ₄	HAsOl-	9.3×10^{-8}	7.03
Hydrosplfuric	H ₂ S	HS-	9.1×10^{-8}	7.04
Phosphoric (2)	H ₂ PO ₄	HPO}-	6.23×10^{-8}	7.21
Hypochlorous	HCIO	CIO-	3.0×10^{-8}	7.53
Hydrocyanic	HCN	CN-	6.17×10^{-10}	9.21
Ammonium ion	NH.	NH ₃	5.6×10^{-10}	9.25
Carbonic (2)	HCO ₃	CO-	4.8×10^{-11}	10.32
Arsenic (3)	HAsOl -	AsO4	3.0×10^{-12}	11.53
Hydrogen peroxide	H ₂ O ₂	HO ₂	2.4×10^{-12}	11.62
Phosphoric (3)	HPO3-	PO ₄ -	2.2×10^{-13}	12.67
Water	H ₂ O	OH-	1.0×10^{-14}	14.00

Laboratory 3 Thursday, March 23, 2000 Page 2 of 2