Quiz 3

Name
Thursday, February 8, 2001

Section (circle one)
 Dan at 9:30
 Dan at 10:30
 Aimee at 9:30
 Aimee at 10:30

1) (5 points) The following reaction has an equilibrium constant K equal to 3.07×10^{-4} at $24^{\circ} \mathrm{C}$

$$
2 \mathrm{NOBr}_{(\mathrm{g})} \longleftrightarrow 2 \mathrm{NO}_{(\mathrm{g})}+\mathrm{Br}_{2(\mathrm{~g})}
$$

A mixture of $\mathrm{NOBr}_{(\mathrm{g}}, \mathrm{NO}_{(\mathrm{g})}$ and $\mathrm{Br}_{2(\mathrm{~g})}$ is in equilibrium in a 1 liter sealed vessel at $24^{\circ} \mathrm{C}$. The partial pressure (in atm) of $\mathrm{NOBr}_{(\mathrm{g})}$ is equal to that of $\mathrm{NO}_{(\mathrm{g})}$. What is the partial pressure of $\mathrm{Br}_{2(\mathrm{~g})}$?
2) (5 points) Flourine gas forms fluorine atoms at high temperature:

$$
\mathrm{F}_{2(\mathrm{~g})} \quad \longleftrightarrow 2 \mathrm{~F}_{(\mathrm{g})}
$$

Use the following thermodynamic data to determine the equilibrium constant for this reaction at $900^{\circ} \mathrm{C}$. (You may assume that $\Delta \mathrm{H}$ and $\Delta \mathrm{S}$ of the reaction are independent of temperature.)
$\mathrm{R}=8.314 \mathrm{~J} / \mathrm{mol} \mathrm{K}$
$\left.\Delta \mathrm{H}_{\mathrm{f}}{ }^{0}\left(\mathrm{~F}_{2(\mathrm{~g})}\right)=0 \mathrm{~kJ} / \mathrm{mol} ; \quad \quad \mathrm{S}^{0}\left(\mathrm{~F}_{2(\mathrm{~g}}\right)\right)=202.78 \mathrm{~J} /(\mathrm{mol} \mathrm{K})$
$\Delta \mathrm{H}_{\mathrm{f}}{ }^{\circ}\left(\mathrm{F}_{(\mathrm{g})}\right)=78.99 \mathrm{~kJ} / \mathrm{mol} ; \quad \mathrm{S}^{\mathrm{o}}\left(\mathrm{F}_{(\mathrm{g})}\right)=158.754 \mathrm{~J} /(\mathrm{mol} \mathrm{K})$

