Homework 6

Distributed: Friday, March 2, 2001

Due: Wednesday, March 7, 2001

Name \qquad Recitation Section (circle one): Dan: 9:30 10:30 Aimee: 9:30 10:30
Other members of your work group (if you worked with others)
You may use the virtual lab (on the links page of the course web site) to check your answers to some of these problems.

1) (2 pts) Consider 50 ml of a 1 M solution of HClO . You can add 50 ml of any one of the following solutions:
1 M NaF
1 M NaClO
1 M NaCN .

Assume you want the resulting solution to have the smallest [HClO] possible. Which of the above three solutions would you add and why. (Please circle one of the above and give the reason for you answer below.)
2) (4 pts) You have two bottles, one filled with $1 \mathrm{M} \mathrm{NaAc}(\mathrm{NaAc}=$ sodium acetate $)$ and one filled with 1 M HCl . You want to make 100 ml of a buffer with $\mathrm{pH}=5.2$ by mixing together appropriate amounts of these solutions. How much of each solution do you use? (please show your work)
vol of $\mathrm{NaAc}=$ \qquad ml ; vol of $\mathrm{HCl}=$ (above should add to 100 ml)
3) (4 pts) Methyl red has two forms, a red form at low pH and a yellow form at high pH (see Figure 10.8 of the textbook). You add 75 ml of 1.0 M NaClO to 50 ml of 1.0 M HClO . You add a drop of indicator solution containing methyl red (you can ignore dilution effects due to the addition of the drop). What is the color of the solution? What is the ratio between the concentration of the red and yellow forms of methyl red ([red form]/[yellow form])? (Please show your work and explain your answer.)
\qquad [red form]/[yellow form]=

