Homework 5

Name \qquad Recitation Section (circle one): Dan: 9:30 10:30 Aimee: 9:30 10:30
How much time did you spend on this assignment (include time spent on practice problems)? \qquad (This is used only to monitor class work load.)

Although this assignment does not require use of the "Chemical Laboratory Simulation", you may use the simulation to check your answers to questions 2-7. Please follow the link on the course website to access the virtual lab.

1) (2pt) Use thermodynamic data in the back of your book to decide whether the equilibrium constant for the following reaction will increase or decrease with temperature? (Please show your work.)

$$
\mathrm{CH}_{4(\mathrm{~g})}+2 \mathrm{H}_{2} \mathrm{~S}_{(\mathrm{g})} \longleftrightarrow \mathrm{CS}_{2(\mathrm{~g})}+4 \mathrm{H}_{2(\mathrm{~g})}
$$

What happens to the ratio of $\frac{\mathrm{P}_{\mathrm{H}_{2} \mathrm{~S}}}{\mathrm{P}_{\mathrm{CS}_{2}}}$ if the volume is decreased?

What happens to the ratio of $\frac{\mathrm{P}_{\mathrm{H}_{2} \mathrm{~S}}}{\mathrm{P}_{\mathrm{CS}_{2}}}$ if $\mathrm{CH}_{4(\mathrm{~g})}$ is added?
2) (1pt) How many ml of 10.0 M NaOH do I need to add to 100 ml of 1.00 M NaOH to get a solution that is 5.00 M in NaOH ? (Please show your work.)
\qquad
3) (1pt) How many ml of 10.0 M HCl do I need to add to 100 ml of 1.00 M NaOH to get a solution with $\mathrm{pH}=7$? (Please show your work.)
4) $(1 \mathrm{pt}) 75.0 \mathrm{ml}$ of 1.00 M HCl is added to 100 ml of 1.00 M NaOH . What is the pH of the resulting solution? (Please show your work.)
\qquad
5) (2pts) How many ml of 1.00 M HCl do I need to add to 10.0 ml of 1.00 M NaOH to get a solution with $\mathrm{pH}=13$? (Please show your work.)
6) (2pts) How many ml of 1.00 M HCl do I need to add to 10.0 ml of 1.00 M NaOH to get a solution with $\mathrm{pH}=1$? (Please show your work.)

Amount of $1 \mathrm{M} \mathrm{HCl}=$ \qquad ml
7) (1pt) What is the pH of a 2.50 M solution of acetic acid ($\mathrm{Hac}=\mathrm{CH}_{3} \mathrm{COOH}$)? (Please show your work.)
\qquad

